Vol. 31, issue 12, article # 9
Copy the reference to clipboard
Abstract:
The pure water vapor absorption spectra have been measured by the photoacoustic method in transparency microwindows near 6177 cm-1 at several pressures at a room temperature. Cross section of the water vapor continuum absorption has been determined to be (5.4 ± 0.8) × 10-24 × cm2 × mol.-1 × atm-1. This value is 4 times lower than the data known from FTS measurements and 20 times higher than the results obtained from CRDS measurements in this transparency window.
Keywords:
continuum absorption, water vapor, atmospheric windows, photoacoustic spectrometer
References:
1. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33, iss. 3–4. Р. 535–555.
2. Ptashnik I.V. Kontinual'noe pogloshchenie vodyanogo para: kratkaya predystoriya i sovremennoe sostoyanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
3. Clough S.A., Iacono M.J., Moncet J.-L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor // J. Geophys. Res. 1992. V. 97. Р. 15761–15785.
4. Kilsby C.G., Edwards D.P., Saunders R.W., Foot J.S. Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons // Q. J. R. Meteorol. Soc. 1992. V. 118. Р. 715–748.
5. Bicknell W.E., Cecca S.D., Griffin M.K. Search for low-absorption regimes in the 1.6 and 2.1 mm atmospheric windows // J. of Directed Energy. 2006. V. 2, N 2. P. 151–161.
6. Baranov Y.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313.
7. Ptashnik I.V., Petrova T.M., Ponomarev Y., Solodov A.A., Solodov A.M., Shine K.P. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.
8. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M. Water vapor continuum absorption in near-IR atmospheric windows // Atmos. Ocean. Opt. 2015. V. 28, N 2. P. 115–120.
9. Mondelain D., Manigand S., Kassi S., Campargue A. Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 mm transparency window // J. Geophys. Res. 2014. V. 119. P. 5625–5639.
10. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini D., Campargue A. The water vapor self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 mm and 2.0 mm // Atmos. Meas. Tech. 2018. V. 11. P. 2159–2171.
11. Kapitanov V.A. Osipov K.Yu. Programmno-upravlyaemyy lazernyy optiko-akusticheskiy spektrometr vysokogo razresheniya. Metodiki i programmy izmereniy i obrabotki slabykh spektrov pogloshcheniya atmosfernykh gazov // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 923–929.
12. URL: https://www.sacher-laser.com/home/scientific-lasers/tunable_lasers/littman/tec_500__tec_520_littmanmetcalf_laser_system_lion.html (last access: 15.06.2018).
13. URL: https://www.sacher-laser.com/home/electronic-systems/pilot/pc/pilot_pc_500ma3000ma.html (last access: 15.06.2018).
14. Osipov K.YU., Kapitanov V.A. Pretsizionnyy zerkal'nyy opticheskiy disk dlya modulyatora // NOU-KHAU. 02-2014 ot 14.11.2014 IOA SO RAN, g. Tomsk, pl. Akademika Zueva, 1. Pravoobladatel': IOA SO RAN (RU).
15. URL: https://www.toptica.com/fileadmin/Editors_English/03_products/09_wavemeters_photonicals/04_wavelength_meter/HighFinesse_Wavemeter_web.pdf (last access: 10.06.2018).
16. URL: http://www.scitec.uk.com/lockin_amplifier/420 (last access: 12.04.2018).
17. URL: http://www.ni.com/nisearch/app/main/p/bot/no/ap/global/lang/ru/pg/1/q/ni%20pci%206251/ (last access: 12.04.2018).
18. Antipov A.B., Kapitanov V.A., Ponomarev Yu.N., Sapozhnikova V.A. Optiko-akusticheskiy metod v lazernoy spektroskopii molekulyarnykh gazov. Novosibirsk: Наука, 1984. 128 p.
19. Kapitanov V.A., Ponomarev Yu.N. High resolution ethylene absorption spectrum between 6035 and 6210 cm−1 // Appl. Phys. B. 2008. V. 90, N 2. P. 235–241.
20. Kapitanov V.A., Ponomarev Yu.N., Tyryshkin I.S., Rostov A.P. Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070–6180 cm−1 region // Spectrochim. Acta A. 2007. V. 66. P. 811–818.
21. Kapitanov V.A., Osipov K.Yu., Protasevich A.E., Ponomarev Yu.N. Collisional parameters of N2 broadened methane lines in the R9 multiplet of the 2n3 band. Multispectrum fittings of the overlapping spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 16. P. 1985–1992.
22. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. Vander, Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
23. Tennyson J. Bernath P.F., Campargue A., Csaszar A.G., Daumont L., Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Tran H., Zobov N.F., Buldyreva J., Boone C.D., de Vizia M.D., Gianfrani L., Hartmann J.M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.L. Recommended isolated-line profile for representing high-resolution spectroscopic transitions, 2014, IUPAC Technical Report.
24. Lodi L., Tennyson J., Polyansky O.L. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule // J. Chem. Phys. 2011. V. 135. P. 034113-10.
25. Jenouvrier A., Daumont L., Regalia-Jarlot L., Tyuterev Vl.G., Carleer M., Vandaele A.C., Mikhailenko S., Fally S. Fourier transform measurements of water vapor line parameters in the 4200–6600 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105, N 2. P. 326–355.
26. Leshchishina O., Mikhailenko S., Mondelain D., Kassi S., Campargue A. An improved line list for water vapor in the 1.5 mm transparency window by highly sensitive CRDS between 5852 and 6607 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 69–80.
27. Mlawer E.J., Payne V.H., Moncet J.L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Philos. Trans. Royal Soc. A. 2012. V. 370. P. 2520–2556.