Vol. 31, issue 12, article # 8

Baldin M.N., Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Gruznov V.M., Zharkov V.I., Panchenko Yu.N., Pryamov M.V., Sakovich G.V. On the effectiveness of joint laser and gas chromatographic remote detection of explosive traces. // Optika Atmosfery i Okeana. 2018. V. 31. No. 12. P. 988–994 [in Russian].
Copy the reference to clipboard
Abstract:

The results of remote detection of objects containing explosives by means of a combined use of a lidar detector of explosive traces and a portable express gas chromatograph are presented. It is shown that the lidar detector of explosive traces confidently detects the simulators of TNT, hexogen, and PTEN from a distance of 5 m when sounding the surface of a sample. It is shown that laser action on the surface of the sample causes vapor desorption and provides a reliable detection of samples by means of the gas chromatograph. It is shown that the joint use of the method of laser sounding and gas chromatography makes it possible to increase the reliability of detecting explosives. The prospects have been determined of using the gas chromatography method in the research on the development of laser sounding techniques.

Keywords:

explosives, detection, lidar, gas chromatograph

References:

   1. Bauer C., Geiser P., Burgmeier J., Holl J., Schade W. Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives // Appl. Phys. B. 2006. V. 85, N 2–3. P. 251–256.
   2. Mukherjee A., Porten S., Patel C.K.N. Standoff detection of explosive substances at distances of up to 150 m // Appl. Opt. 2010. V. 49, N 11. P. 2072–2078.
   3. Karapuzikov A.I., Nabiev Sh.Sh., Nadezhdinskiy A.I., Ponomarev Yu.N. Lazernye metody obnaruzheniya parov vzryvchatykh veshchestv v otkrytoy atmosfere: analiticheskie vozmozhnosti dlya protivodeystviya terroristicheskoy ugroze // Optika atmosf. i okeana. 2010. V. 23, N 10. P. 894–904; Karapuzikov A.I., Nabiev Sh.Sh., Nadezhdinskii A.I., Ponomarev Yu.N. Lazer methods of detection of explosive matter vapors in the open atmosphere: analytical possibilities of counteracting the terror threats // Atmos. Ocean. Opt. 2011. V. 24, N 2. P. 133–143.
   4. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
   5. Skvortsov L.A. Lazernye metody distantsionnogo obnaruzheniya khimicheskikh soedineniy na poverkhnosti tel. M.: Tekhnosfera, 2015. 209 p.
   6. Bobrovnikov S.M., Gorlov E.V. Lidarnyy metod obnaruzheniya parov vzryvchatykh veshchestv v atmosfere // Optika atmosf. i okeana. 2010. V. 23, N 12. P. 1055–1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean. Opt. 2011. V. 24, N 3. P. 235–241.
   7. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Distantsionnoe obnaruzhenie sledov vysokoenergeticheskikh materialov na ideal'noy podlozhke s pomoshch'yu effekta SKR // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 691–695; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 604–608.
   8. Ageev B.G., Klimkin A.V., Kuryak A.N., Osipov K.Yu., Ponomarev Yu.N. Distantsionnyy detektor opasnykh veshchestv na osnove perestraivaemogo 13С16О2-lazera // Optika atmosf. i okeana. 2017. V. 30, N 3. P. 204–208; Ageev B.G., Klimkin A.V., Kuryak A.N., Osipov K.Yu., Ponomarev Yu.N. Remote detector of hazardous substances based on a tunable 13С16О2 laser // Atmos. Ocean. Opt. 2017. V. 30, N 4. P. 337–341.
   9. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Yu.N., Sakovich G.V. Lidarnoe obnaruzhenie parov vzryvchatykh veshchestv v atmosfere // Izv. vuzov. Fizika. 2015. V. 58, N 9. P. 14–21.
10. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Aksenov V.A., Kikhtenko A.V., Tivileva M.I. Remote detector of explosive traces // Proc. SPIE. 2014. V. 9292. P. 92922G-1-4.
11. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N. Remote detection of traces of high energetic materials // Proc. SPIE. 2015. V. 9680. P. 96803J-1-4.
12. Gruznov V.M., Baldin M.N., Pryamov M.V., Maksimov E.M. Opredelenie kontsentratsii parov vzryvchatykh veshchestv s distantsionnym avtomatizirovannym otborom prob pri kontrole ob"ektov // Zhurn. analit. khimii. 2017. V. 72, N 11. P. 1000–1005.
13. Baldin M.N., Gruznov V.M. Portativnyy gazovyy khromatograf s vozdukhom v kachestve gaza-nositelya dlya opredeleniya sledov vzryvchatykh veshchestv // Zhurn. analit. khimii. 2013. V. 68, N 11. P. 1117–1122.
14. Gruznov V.M., Filonenko V.G. Skorostnoe kontsentrirovanie i vikhrevoy otbor prob vozdukha pri obnaruzhenii sledovykh kolichestv organicheskikh veshchestv Novosibirsk: INGG SO RAN, 2011. 174 p.
15. Sposob prigotovleniya standartnykh gazovykh smesey i ustroystvo dlya ego osushchestvleniya: Pat. 2410678. Rossiya, G 01 N 30/00. Nadolinnyy V.A., Kolomiets Yu.N., Mardezhova G.A., Danilenko A.M., Pronin V.G. In-t neorganicheskoy khimii im. A.V. Nikolaeva SO RAN. N 2009137173/28; Zayavl. 07.10.2009; Opubl. 27.01.2011. Byul. N 3.
 

Back