Vol. 31, issue 10, article # 7

Stephan A., Wildmann N., Smalikho I. N. Measurements of wind turbulence parameters by a Windcube 200s lidar in the atmospheric boundary layer. // Optika Atmosfery i Okeana. 2018. V. 31. No. 10. P. 815–820. DOI: 10.15372/AOO20181007 [in Russian].
Copy the reference to clipboard

Abstract:

A method is proposed for determining the parameters of wind turbulence from data measured by a conically scanning pulsed coherent Doppler lidar in conditions of a weak echo signal. The results of spatiotemporal visualization of the kinetic energy of turbulence, its dissipation rate, and integral scale of turbulence from measurements by the Windcube 200s lidar in the atmospheric boundary layer are presented. It is shown that the applied lidar data filtering procedure allows acceptable results with a nonzero probability of a bad estimate of the radial velocity.

Keywords:

coherent Doppler lidar, wind turbulence

Figures:

References:

   1. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10. P. 4191–4208.
   2. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean Technol. 2009. V. 26, N 2. P. 240–250.
   3. Frehlich R.G., Yadlowsky M.J. Performance of mean-frequency estimators for Doppler radar and lidar // J. Atmos. Ocean Technol. 1994. V. 11, N 5. P. 1217–1230.
   4. Frehlich R.G. Simulation of coherent Doppler lidar performance in the weak-signal regime // J. Atmos. Ocean Technol. 1996. V. 13, N 6. P. 646–658.
   5. Frehlich R.G., Hannon S.M., Henderson S.W. Coherent Doppler lidar measurements of winds in the weak signal regime // Appl. Opt. 1997. V. 36, N 15. P. 3491–3499.
   6. Frehlich R.G. Velocity error for coherent Doppler lidar with pulse accumulation // J. Atmos. Ocean Technol. 2004. V. 21, N 6. P. 905–920.
   7. Smalikho I.N. Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar // J. Atmos. Ocean Technol. 2003. V. 20, N 2. P. 276–291.
   8. Vasiljevic N., Lea G., Courtney M., Cariou J.P., Mann J., and Mikkelsen T. Long-range Windscanner system // Remote Sens. 2016. V. 8, N 11. 896. DOI: 10.3390/rs8110896.
   9. Stephan A., Wildmann N., Smaliho I.N. Effektivnost' metoda MFAS dlya opredeleniya vektora skorosti vetra iz izmerenij lidarom Windcube 200s // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 725–733.
10. Frehlich R.G. Effect of wind turbulence on coherent Doppler lidar performance // J. Atmos. Ocean Technol. 1997. V. 14, N 2. P. 54–75.
11. Frehlich R.G., Cornman L.B. Estimating spatial velocity statistics with coherent Doppler lidar // J. Atmos. Ocean Technol. 2002. V. 19, N 3. P. 355–366.
12. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
13. Banah V.A., Smaliho I.N. Izmerenie vetra v pogranichnom sloe atmosfery mikroimpul'snymi kogerentnymi dopplerovskimi lidarami // Optika i spektroskopiya. 2016. V. 121, N 1. P. 164–171.
14. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
15. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Part 2. M.: Nauka, 1967. 720 p.
16. Lamli Dzh., Panovskij G. Struktura atmosfernoj turbulentnosti. M.: Mir, 1966. 264 p.
17. Hogan R.J., Grant A.L.M., Illingworth A.J., Pearson G.N., O’Connor E.J. Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar // Q. J. R. Meteorol. Soc. 2009. V. 135, N 4. P. 635–643.
18. Barlow J.F., Dunbar T.M., Nemitz E.G., Wood C.R., Gallagher M.W., Davies F., O’Connor E., Harrison R.M. Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II // Atmosp. Chem. Phys. 2011. V. 11, N 3. P. 2111–2125.
19. Huang M., Gao Z., Miao S., Chen F., Lemone M.A., Li J., Hu F., Wang L. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015 // Bound.-Layer Meteorol. 2017. V. 162, N 9. P. 503–522.
20. Pichugina Y.L., Banta R.M. Stable boundary layer depth from high-resolution measurements of the mean wind profile // J. Appl. Meteorol. Climatol. 2010. V. 49, N 1. P. 20–35.
21. Bonin T.A., Carroll B.J., Hardesty R.M., Brewer W.A., Hajny K., Salmon O.E., Shepson P.B. Doppler lidar observation of the mixing height in Indianapolis using an automated composite fuzzy logic approach // J. Atmos. Ocean. Technol. 2018. V. 35, N. 3. P. 915–935.