Vol. 31, issue 10, article # 1

Mingalev I.V., Fedotova E.A., Orlov K.G. Construction of the parameterization of the molecular absorption in the lower and middle atmosphere of the Earth in the infrared range. // Optika Atmosfery i Okeana. 2018. V. 31. No. 10. P. 779–786 [in Russian].
Copy the reference to clipboard
Abstract:

The paper presents a new algorithm for constructing parameterizations of molecular absorption in the Earth's atmosphere, which takes into account the change in the atmospheric gas composition with altitude and has a number of other advantages, as well as a parametrization constructed using this algorithm in the frequency range from 10 to 2000 cm-1 in the altitude range from the Earth's surface to 76 km. A comparison of the results of calculations of the eigenvalue field of the Earth's atmosphere, carried out using this parametrization, with the results of reference calculations (line-by-line) shows that the presented parametrization has good accuracy in the lower and middle atmosphere in the absence of cloud layers and in the presence of cloud layers with a large optical thickness.

Keywords:

parameterization of molecular absorption, atmosphere radiation, calculation of radiation field

References:

   1. Timofeev Yu.M., Vasil'ev A.V. Teoreticheskie osnovy atmosfernoj optiki. SPb.: Nauka, 2003. 474 p.
   2. Kondrat'ev K.Ya. Aktinometriya. L.: Gidrometeoizdat, 1965. 692 p.
   3. Ku-Nan Liou. Osnovy radiatsionnykh protsessov v atmosfere. L.: Gidrometeoizdat, 1984. 376 p.
   4. Sushkevich T.A. Matematicheskie modeli perenosa izlucheniya. M.: BINOM. Laboratoriya znanij, 2006. 661 p.
   5. Tvorogov S.D. Nekotorye aspekty zadachi o predstavlenii funktsii pogloshcheniya ryadom eksponent // Optika atmosf. i okeana. 1994. V. 7, N 3. P. 315–326.
   6. Tvorogov S.D., Nesmelova L.I. O nekotorykh primeneniyakh ryadov eksponent dlya vychisleniya funktsii pogloshcheniya // Optika atmosf. i okeana. 1996. V. 9, N 8. P. 1141–1144.
   7. Tvorogov S.D., Nesmelova L.I., Rodimova O.B. Predstavlenie funktsij propuskaniya ryadami eksponent // Optika atmosf. i okeana. 1996. V. 9, N 3. P. 373–377.
   8. Tvorogov S.D., Nesmelova L.I., Rodimova O.B. Raschet funktsij propuskaniya v blizhnej IK-oblasti spektra s pomoshch'yu ryadov eksponent // Optika atmosf. i okeana. 1997. V. 10, N 12. P. 1475–1480.
   9. Tvorogov S.D., Nesmelova L.I., Rodimova O.B. K voprosu ob utochnenii integrirovaniya po chastote pri vychislenii radiatsionnykh harakteristik // Optika atmosf. i okeana. 1999. V. 12, N 9. P. 832–834.
10. Tvorogov S.D. Primenenie ryadov eksponent dlya integrirovaniya uravneniya perenosa izlucheniya po chastote // Optika atmosf. i okeana. 1999. V. 12, N 9. P. 763–766.
11. Tvorogov S.D. O postroenii ryada eksponent neposredstvenno po informatsii o funktsii propuskaniya // Optika atmosf. i okeana. 2001. V. 14, N 9. P. 736–739.
12. Tvorogov S.D., Rodimova O.B. Raschet funktsij propuskaniya pri malykh davleniyakh // Optika atmosf. i okeana. 2008. V. 21, N 11. P. 915–921.
13. Fomin B.A. Metod parametrizatsii gazovogo pogloshcheniya atmosfernoj radiatsii, pozvolyayushchij poluchit' k-raspredelenie s minimal'nym chislom chlenov // Optika atmosf. i okeana. 2003. V. 16, N 3. P. 268–271.
14. Fomin B.A. A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave // J. Geophys. Res. 2004. V. 109. P. D02110.
15. Fomin B.A., Correa P.M. A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave // J. Geophys. Res. 2005. V. 110. P. D02106.
16. Mlawer E.J., Taubman S.J., Brown P.D., Iacono M.J., Clough S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave // J. Geophys. Res. D. 1997. V. 102, N 14. P. 16.663–16.682.
17. Hogan R.J. The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function // J. Atmos. Sci. 2010. V. 67. P. 2086–2100.
18. Shil'kov A.V., Gertsev M.N. Verifikatsiya metoda lebegovskogo osredneniya // Matem. modelirovanie. 2015. V. 27, N 8. P. 13–31.
19. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner C.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Faytl A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
20. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT CKD model of continuum absorption // Phylos. Trans. R. Soc. A. 2012. V. 370, N 1968. P. 2520–2556.
21. Ignat'ev N.I., Mingalev I.V., Rodin A.V., Fedotova E.A. Novyj variant metoda diskretnykh ordinat dlya rascheta sobstvennogo izlucheniya v gorizontal'no odnorodnoj atmosfere // Zhurn. vychislit. matem. i matem. fiz. 2015. V. 55, N 10. P. 109–123.
22. Fomin B.A. Effective interpolation technique for line-by-line calculations of radiation absorption in gases // J. Quant. Spectrosc. Radiat. Transfer. 1995. V. 53. P. 663–669.
23. Mingalev I.V, Fedotova E.A., Orlov K.G. Vliyanie opticheski tolstykh sloev na nagrev atmosfery sobstvennym izlucheniem // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. V. 14, N 5. P. 100–108.
24. McClatchey R.A., Bolle H.-J., Kondratyev K.Ya. A preliminary cloudless standard atmosphere for radiation computation // World Climate Research Programme. International Association For Meteorology And Atmospheric Physics, Radiation Commission. 1986. Ser. WCP. V. 112, N 24. 60 p.
 

Back