Vol. 31, issue 05, article # 1

Klimeshina T.E., Ptashnik I.V. Program code for retrieval of the water vapor continuum absorption from experimental data. // Optika Atmosfery i Okeana. 2018. V. 31. No. 05. P. 335–340 [in Russian].
Copy the reference to clipboard

The software was created that allows automatic retrieval of water vapor continuum absorption from experimental data. The program includes baseline correction (if necessary), automatic correction of the experimental spectrum by frequency, automatic “spectroscopic” correction of the measured pressure value, subtraction of the spectral line local contributions, automatic selection of microwindows of transparency with the most reliable results of continuum retrieval and smoothing of the values obtained. Currently the software is intended to be used for processing Fourier measurement data, but it can be adjusted for other experimental methods.


water vapor, continuum absorption, continuum retrieval, experimental data


  1. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. P. 535–555.
  2. Ptashnik I.V. Kontinualnoe pogloshhenie vodyanogo para: kratkaya predystoriya i sovremennoe sostoyanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
  3. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapour continuum in the 1200–8000 cm-1 region between 293 K and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301.
  4. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. P. D16305.
  5. Mitsel A.A., Ptashnik I.V., Firsov K.M., Fomin B.A. Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere // Atmos. Ocean. Opt. 1995. V. 8. P. 847–850.
  6. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
  7. Shillings A., Ball S., Barber M., Tennyson J., Jones R.L. An upper limit for water dimmer absorption in the 750 nm spectral region and a revised water line list // Atmos. Chem. Phys. 2011. V. 11. P. 4273–4287.
  8. Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Kontinualnoe pogloshhenie vodyanogo para v polosax 2.7 i 6.25 mm pri ponizhennyh temperaturah // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 772–776; Ptashnik I.V., Klimеshinа Т.Е., Pеtrovа Т.М., Sоlоdоv А.А., Sоlоdоv А.М. Water vapor continuum absorption in the 2.7 and 6.25 mm bands at decreased temperatures // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 211–215.