Vol. 31, issue 05, article # 6

Belov V.V., Burkatovskaya Yu.B., Krasnenko N.P., Rakov A.S., Rakov D.S., Shamanaeva L.G. Experimental and theoretical investigations of near-ground acoustic radiation propagation in the atmosphere. // Optika Atmosfery i Okeana. 2018. V. 31. No. 05. P. 372–377 [in Russian].
Copy the reference to clipboard

The process of near-ground propagation of monochromatic acoustic radiation at frequencies of 300, 1000, 2000, and 3150 Hz along atmospheric paths up to 100 m long is investigated experimentally and theoretically depending on altitudes of acoustic source and receiver. Experiments were performed at the experimental site of the IMCES SB RAS using a specially developed setup. The dependence of the recorded sound pressure level on the propagation path length and the initial signal power is studied. The theoretical analysis is performed by the Monte Carlo method that allows contributions of multiple scattering of acoustic radiation, refraction, and reflection by the underlying surface to the acoustic signal recorded with the detector to be taken into account for realistic models of the atmosphere. The local estimation algorithm of the Monte Carlo method developed by the authors was used for calculations. The comparison of the experimental and theoretical results shows their satisfactory agreement, which testifies to the efficiency of the suggested Monte Carlo algorithm and its applicabilty to the prediction of near-ground acoustic radiation propagation.


atmospheric acoustics, near-ground propagation of acoustic radiation, Monte Carlo method, absorption, refraction, sound scattering by atmospheric turbulence


  1. Salomons E.M. Computational atmospheric acoustics. Dordrecht, Boston, London: Kluwer Academic Publishers, 2001. 335 p.
  2. Attenborough K., Li K.M., Horoshenkov K. Predicting outdoor sound. London, New York: Taylor & Francis, 2007. 441 p.
  3. Wilson D.K., Pettit C.L., Ostashev V.E. Sound Propagation in the atmospheric boundary layer // Acoust. Today. 2015. V. 11, N 2. P. 44–53.
  4. Krasnenko N.P., Kudryavcev A.N., Rakov A.S., Rakov D.S. Issledovanie harakteristik moschnoy izluchayuschey akusticheskoy antennoy reshetki // Dokl. TUSUR. 2015. N 4 (38). P. 47–51.
  5. Belov V.V., Burkatovskaya Yu.B., Krasnenko N.P., Shamanaeva L.G. Primenenie metoda Monte-Karlo v atmosfernoy akustike // Optika atmosf. i okeana. 2011. V. 24, N 12. P. 1072–1077.
  6. Shamanaeva L.G., Belov V.V., Burkatovskaya Yu.B., Krasnenko N.P. Statistical simulation of acoustic radiation propagation in the lower atmosphere by the Monte Carlo method // Proc. SPIE. 2012. V. 8696. P. 86960C.
  7. Shamanaeva L.G., Belov V.V., Burkatovskaya Yu.B., Krasnenko N.P., Tarasenkov M.V. Programma statisticheskogo modelirovaniya processa perenosa akusticheskogo izlucheniya vdol gorizontalnyh trass v dvizhuscheysya turbulentnoy pogloschayuschey i rasseivayuschey atmosfere // Svidetelstvo o gosudarstvennoy registracii programm dlya JeVM N 2016619427 ot 18.08.2016. Pravoobladatel': IOA SO RAN, IMKES SO RAN (RU).
  8. Method for calculation of the absorption of sound by the atmosphere. ANSI S1.26-1995. New York: American National Standard Institute. 1995.
  9. Ostashev V.E., Wilson D.K. Relative Contributions from temperature and wind velocity fluctuations to the statistical moments of a sound field in a turbulent atmosphere // Acta Acust. Acust. 2000. V. 86, N 2. P. 260–268.
  10. Krasnenko N.P., Rakov A.S., Rakov D.S., Shamanaeva L.G. Vliyanie impedansnyh svoystv zemnoy poverhnosti na oslablenie zvuka pri prizemnom rasprostranenii // Izv. vuz. Fizika. 2014. V. 57, N 1. P. 92–99.