Vol. 31, issue 05, article # 2

Bogdanova Yu.V., Rodimova O.B. Water dimer – water monomer absorption relation within the H2O rotational band. // Optika Atmosfery i Okeana. 2018. V. 31. No. 05. P. 341–348 [in Russian].
Copy the reference to clipboard
Abstract:

Spectral line contour found on the basis of the asymptotic line wing theory with parameters obtained from fitting to experiment in the 8–12 μm region and describing the spectral and temperature behavior of the water vapor absorption coefficient in this region is used to calculate absorption in the long-wave wing of the H2O rotational band. The absorption coefficient calculated within the asymptotic line wing theory takes into account the absorption by any colliding molecular pairs except the absorption due to stable dimers. The application of this contour in calculation of the absorption coefficient in the range of 14–200 cm-1 allows us to extract the absorption part due to stable dimers from the absorption measured with the special resonator spectrometer. The dimer absorption spectrum derived shows a consistency with the spectra from quantum-mechanical calculations and measured in other experiments.

Keywords:

water vapor, water dimers, spectral line wings, microwave absorption

References:


  1. Rosenkranz P.W. Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm-1 // J. Chem. Phys. 1987. V. 87, N 1. P. 163–170.

  2. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128, N 12. P. 124313.

  3. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektralnoj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.

  4. Tvorogov S.D., Rodimova O.B. Stolknovitelnyj kontur spektralnyh linij. Tomsk: Izd-vo IOA SO RAN, 2013. 196 p.

  5. Serov E.A., Odintsova T.A., Tretyakov M.Yu., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12.

  6. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.

  7. Gebbie H.A., Burroughs W.J., Chamberlain J., Harries J.E., Jones R.G. Dimers of the water molecule in the Earth’s atmosphere // Nature (Gr. Brit.). 1969. V. 221. P. 143–145.

  8. Daniel J.S., Solomon S., Sanders R.W., Portmann R.W., Miller D.C., Madsen W. Implications for water monomer and dimer solar absorption for observations at Boulder, Colorado // J. Geophys. Res. D. 1999. V. 14, N 104. P. 16785–16791.

  9. Hill C., Jones R. Absorption of solar radiation by water vapor in clear and cloudy skies: Implications for anomalous absorption // J. Geophys. Res. D. 2000. V. 7, N 105. P. 9421–9428.

  10. Pfeilsticker K., Lotter A., Peters C., Bosch H. Atmospheric detection of water dimers via near-infrared absorption // Science. 2003. V. 300, N 5628. P. 2078–2080.

  11. Low G.R., Kjaergaard H.G. Calculation of OH-stretching band intensities of the water dimer and trimer // J. Chem. Phys. 1999. V. 110. P. 9104–9115.

  12. Suhm M.A. How broad are water dimer bands? // Science (Letter to the Editor). 2004. V. 304. P. 823.

  13. Kassi S., Macko P., Naumenko O., Campargue A. The absorption spectrum of water near 750 nm by CW-CRDS: Contribution to the search of water dimer absorption // Phys. Chem. Chem. Phys. 2005. V. 7. P. 2460–2467.

  14. Pfeilsticker K., Lotter A., Peters C., Bosch H. Atmospheric field measurements for the detection water dimer (H2O)2 // Abstr. of the CECAM meeting “Water Dimers and Weakly Interacting Species in Atmospheric Modelling". Lyon, France. 25–27 April, 2005.

  15. Shillings A.J.L., Ball S.M., Barber M.J., Tennyson J., Jones R.L. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list // Atmos. Chem. Phys. 2011. N 11. P. 4273–4287.

  16. Ptashnik I.V. Dimery vody: «neizvestnyj» eksperiment // Optika atmosf. i okeana. 2005. V. 18, N 4. P. 359–362.

  17. Burch D.E. Absorption by H2O in narrow windows between 3000–4200 cm–1 // US Air Force Geophys. Laboratory rep. AFGL-TR-85-0036. Hanscom Air Force Base, Mass. 1985.

  18. Schofield D.P., Kjaergaard H.G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer // Phys. Chem. Chem. Phys. 2003. V. 5. P. 3100–3105.

  19. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vapor continuum measurements between 3100 and 4400 cm-1: Evidence for water dimer absorption in near atmospheric conditions // Geophys. Res. Lett. 2007. V. 34. P. L12808.

  20. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: Evidence for water dimers // Q. J. R. Meteorol. Soc. 2004. V. 130. P. 2391–2408.

  21. Tretyakov M.Yu., Koshelev M.A., Serov E.A., Parshin V.V., Odincova T.A., Bubnov G.M. Dimer vody i atmosfernyj kontinuum // Uspehi fiz. nauk // Успехи физ. наук. 2014. V. 184, N 11. P. 1199–1215.

  22. Odintsova T.A., Tretyakov M.Yu., Pirali O., Roy P. Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 187. P. 116–123.

  23. Bogdanova Yu.V., Rodimova O.B. O vydelenii spektra dimerov vodyanogo para v predelah vrashatelnoj polosy monomera // Optika atmosf. i okeana. Fiz. atmosf.: Sb. dokl. XXIII Mezhdunar. simpoz. Tomsk: Izd-vo IOA SO RAN, 2017. P. А6–А9.

  24. Tvorogov S.D., Nesmelova L.I. Radiacionnye processy v krylyah polos atmosfernyh gazov // Izv. AN SSSR. Fiz. atmosf. i okeana. 1976. V. 12, N 6. P. 627–633.

  25. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoj teorii. Novosibirsk: Nauka, 1984. 169 p.

  26. Tvorogov S.D., Rodimova O.B. Spectral line shape. I. Kinetic equation for arbitrary frequency detunings // J. Chem. Phys. 1995. V. 102, N 22. P. 8736–8745.

  27. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. 2011. V. 116. Р. D16305.

  28. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapour continuum in the 1200–8000 cm-1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. Р. D21301.

  29. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.

  30. Rodimova O.B. Kontur spektralnoj linii i pogloshenie v oknah prozrachnosti atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 460–473.

  31. Rodimova O.B. Continuum water vapor absorption in the 4000–8000 cm-1 region // Proc. SPIE. 2015. V. 9680. P. 968002-1–968002-7.

  32. Bogdanova Yu.V., Rodimova O.B. Line shape in far wings and water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2298–2307.

  33. Baranov Y.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2291–2302.

  34. Klimeshina T.E., Rodimova O.B. Temperature dependence of the water vapor continuum absorption in the 3–5 mm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 119. P. 77–83.

  35. Hartmann J.M., Perrin M.Y., Ma Q., Tipping R.H. The infrared continuum of pure water wapor: Calculations and high-temperature measurements // J. Quant. Spectrosc. Radiat. Transfer. 1993. V. 49, N 6. P. 675–691.

  36. Burch D.E., Gryvnak D.A., Pembrook J.D. Tech. Rep. AFGL-TR-79-0054 (1979); Bruch D.E., Gryvnak D.A., Pembrook J.D. Tech. Rep. AFCRL-TR-75-0420 (1975).

  37. Clough S.A., Kneizys F.X., Davies R.W. Line shape and the water vapor continuum // Atmos. Res. 1989. V. 23, iss. 3–4. P. 229–241.

  38. Ma Q., Tipping R.H. The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz // J. Chem. Phys. 1990. V. 93, N 10. P. 7066–7075.

  39. Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 458–467.

  40. Kjaergaard H.G., Garden A.L., Chaban G.M., Gerber R.B., Matthews D.A., Stanton J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112. P. 4324–4335.

  41. Buryak I., Vigasin A.A. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface // J. Chem. Phys. 2015. V. 143. P. 23430-4–23430-8.


  42.  

Back