Vol. 31, issue 05, article # 8

Pashnev V.V., Pavlov V.E., Orlov S.S., Matushchenko Yu.Ya. Factors determining the observed values of the asymmetry coefficients of light fluxes in the atmosphere in the near-IR region. // Optika Atmosfery i Okeana. 2018. V. 31. No. 05. P. 385–390 [in Russian].
Copy the reference to clipboard
Abstract:

This research is a part of the series of works devoted to the study of different factors that influence the phase function of cloudless atmosphere’s brightness: the elongation of aerosol scattering phase function, solar zenith angle, optical thickness, and albedo of underlying surface. The near-infrared region is under the analysis. While calculating the brightness of the cloudless day sky in the solar almucantar, we use the radiation transfer equation. The form of the aerosol phase function is determined by including three types of particles into the atmospheric model: submicroscopic, submicron, and coarse, as well as their mixtures in different proportions. We have received the data for a wavelength of 1.02 m. The data may be used in atmospheric optics as an additional assessment of asymmetry of the aerosol scattering phase function and in approximate calculations of the flow of scattered solar radiation incoming to Earth’s surface.

Keywords:

infrared region of spectrum, optical thickness of molecular and aerosol scattering, aerosol atmospheric model, albedo of underlying surface, the equation of radiation transfer

References:

  1. Izrael Yu.A. O sostoyanii sovremennogo klimata i predlozheniya o deyatelnosti v oblasti protivodeystviya izmeneniyu klimata // Meteorol. i gidrol. 2008. N 10. P. 5–8.
  2. Diagnosticheskiy analiz sostoyaniya okruzhayuschey sredy Arkticheskoy zony Rossiyskoy Federacii (Rasshirennoe rezyume) / pod red. B.A. Morgunova. M.: Nauch. mir, 2011. 200 p.
  3. Kondratev K.Ya. Radiacionnye harakteristiki atmosfery i podstilayuschey poverhnosti. M.: Gidrometeoizdat, 1969. 682 p.
  4. Pavlov V.E., Orlov S.S., Pashnev V.V. Yarkost dnevnogo neba kak istochnik informacii ob albedo podstilayuschey poverhnosti v blizhney IK-oblasti spektra. Part I // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 64–69; Pavlov V.E., Orlov S.S., Pashnev V.V. Daytime sky radiance as a source of information on surface albedo in IR spectral region. Part I // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 282–287.
  5. Feygelson E.M. Ob interpretacii nablyudeniy yarkosti neba // Izv. AN SSSR. Ser. geofizicheskaya. 1958. N 10. P. 1222–1232.
  6. Livshic G.Sh. Rasseyanie sveta v atmosfere. Alma-Ata: Nauka, 1968. 177 p.
  7. Pavlov A.V., Pavlov V.E., Muldashev T.Z. Uglovaya struktura mnogokratno rasseyannogo sveta bezoblachnoy atmosfery // Optika atmosf. i okeana. 1996. V. 9, N 5. P. 688–693.
  8. Aerosol Robotic Network (AERONET) [Electronic resources]. URL: http://aeronet.gsfc.nasa.gov (last access: 17.10.2017).
  9. Pyaskovskaya-Fesenkova E.V. Issledovanie rasseyaniya sveta v zemnoy atmosfere. M.: Nauka, 1957. 219 p.
  10. Andreev S.Yu., Bedareva T.V. Informacionno-vy-chislitelnaya sistema dlya issledovaniya spektralno-uglovyh harakteristik solnechnoy radiacii // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 408–413; Andreev S.Yu., Bedareva T.V. Computer information system for studying spectral and angular characteristics of solar radiation // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 408–413.
  11. Zhuravleva T.B. Modelirovanie perenosa solnechnogo izlucheniya v razlichnyh atmosfernyh usloviyah. Part 1. Determinirovannaya atmosfera // Optika atmosf. i okeana. 2008. V. 28, N 2. P. 99–114.

Back