Vol. 30, issue 08, article # 1

Banakh V.A., Smalikho I.N. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer based on measurements of wind radial velocity by a micropulsed coherent Doppler lidar. I. Numerical analysis. // Optika Atmosfery i Okeana. 2017. V. 30. No. 08. P. 631–637 [in Russian].
Copy the reference to clipboard
Abstract:

The results of numerical study of accuracy of the method of azimuthal structure function for estimation of the dissipation rate of kinetic energy of turbulence from measurements by low energy coherent Doppler lidars are presented. Conical scanning of probing beam of a lidar around the vertical axis is considered. Applicability of the azimuthal structure function method depending on turbulence strength and signal-to-noise ratio is analyzed.

Keywords:

dissipation rate, Doppler lidar, simulation, turbulence strength, signal-to-noise ratio

References:

  1. Kolmogorov A.N. Lokal'naja struktura turbulentnosti v neszhimaemoj vjazkoj zhidkosti pri ochen' bol'shih chislah Rejnol'dsa // Dokl. AN SSSR. 1941. V. 30, N 4. P. 299–303.
  2. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
  3. Sathe A., Mann J. A review of turbulence measurements using ground-based wind lidars // Atmos. Meas. Tech. 2013. V. 6. P. 3147–3167.
  4. Sathe A., Banta R., Pauscher L., Vogstad K., Schlipf D., Wylie S. Estimating turbulence statistics and parameters from groundand nacelle-based lidar measurements // IEA Wind Expert Report. DTU Wind Energy, 2015.
  5. Sathe A., Mann J., Vasiljevic N., Lea G. A six-beam method to measure turbulence statistics using ground-based wind lidars // Atmos. Meas. Tech. 2015. V. 8. P. 729–740.
  6. Smaliho I.N., Banah V.A., Falic A.V., Rudi Ju.A. Opredelenie skorosti dissipacii jenergii turbulentnosti iz dannyh, izmerennyh lidarom «Stream Line» v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 901–905.
  7. Banah V.A., Smaliho I.N. Izmerenie vetra v pogranichnom sloe atmosfery mikroimpul'snymi kogerentnymi dopplerovskimi lidarami // Optika i spektroskopija. 2016. V. 121, N 1. P. 164–171.
  8. Banah V.A., Brjuer A., Pichugina E.L., Smaliho I.N. Izmerenija skorosti i napravlenija vetra kogerentnym doplerovskim lidarom v uslovijah slabogo jehosignala // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 333–340.
  9. Frehlich R.G., Yadlowsky M.J. Performance of mean-frequency estimators for Doppler radar and lidar // J. Atmos. Ocean. Technol. 1994. V. 11, N 5. P. 1217–1230.
  10. Smaliho I.N., Banah V.A. Tochnost' ocenivanija skorosti dissipacii jenergii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondirujushhim puchkom. Part I. Algoritm obrabotki lidarnyh dannyh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 213–219.
  11. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
  12. Ray B.J., Hardesty R.M. Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and Cramer–Rao lower bound // IEEE Trans. Geosci. Remote Sens. 1993. V. 31, N 1. P. 16–27.

Back