Vol. 30, issue 08, article # 9

Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Remote detection of traces of high energetic materials on an ideal substrate using the Raman effect. // Optika Atmosfery i Okeana. 2017. V. 30. No. 08. P. 691–695 [in Russian].
Copy the reference to clipboard
Abstract:

We present experimental results on the remote detection of surface traces of some high energetic materials using a Raman lidar designed on the basis of an excimer KrF laser with a narrow generation line and a multi-channel spectrum analyzer based on diffraction spectrograph and time gated CCD camera. Sensitivity of the system is evaluated for the detection range 10 m. A detection limit of 0.5 μg/cm2 is reached for the surface density of traces of nitrogen-containing chemical materials at the signal accumulation over 1000 laser pulses.

Keywords:

lidar, Raman scattering, remote detection, high energetic materials

References:

  1. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
  2. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
  3. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 20° C: A unique scheme for remote detection of explosives // Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
  4. Skvorcov L.A. Lazernye metody distancionnogo obnaruzhenija himicheskih soedinenij na poverhnosti tel. Moskva: Tehnosfera, 2014. 208 p.
  5. Ageev B.G., Klimkin A.V., Kurjak A.N., Osipov K.Ju., Ponomarev Ju.N. Distancionnyj detektor opasnyh veshhestv na osnove perestraivaemogo 13С16О2-lazera // Optika atmosf. i okeana. 2017. V. 30, N 3. P. 204–208.
  6. Dionne B.C., Rounbehler D.P., Achter E.K., Hobbs J.R., Fine D.H. Vapor pressure of explosives // J. Energetic Mater. 1986. V. 4, N 1. P. 447–472.
  7. Gresham G.L., Davies J.P., Goodrich L.D., Blackwood L.G., Liu B.Y.H., Thimsen D., Yoo S.H., Hallowell S.F. Development of particle standards for testing detection systems: Mass of RDX and particle size distribution of composition 4 residues // Proc. SPIE. 1994. V. 2276. P. 34–44.
  8. Chirico R., Almaviva S., Colao F., Fiorani L., Nuvoli M., Murra D., Menicucci I., Angelini F., Palucci A. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications // Sensors. 2016. V. 16, N 1. P. 1–18.
  9. Bobrovnikov S., Gorlov E., Zharkov V. Simulation of the Raman lidar signal for localized source of atmospheric pollution // Proc. SPIE. 2014. V. 9292. P. 9292-48.
  10. Ray M.D., Sedlacek A.J. Ultraviolet mini-Raman lidar for stand-off, in-situ identification of chemical surface contaminants // Rev. Sci. Inst. 2000. V. 71, N 9. P. 3485–3489.
  11. Arthur J.S, Mark D.R., Higdon N.S., Richter D.A. Short-range, non-contact detection of surface contamination using Raman lidar // Proc. SPIE. 2001. V. 4577. P. 95–104.
  12. GOST 31581-2012. Lazernaja bezopasnost'. Obshhie trebovanija bezopasnosti pri razrabotke i jekspluatacii lazernyh izdelij.  M.: Standartinform, 2013. 20 p.
  13. SanPiN 5804-91. Sanitarnye normy i pravila ustrojstva i jekspluatacii lazerov. M., 1992. 61 p.
  14. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Jeksperimental'naja ocenka chuvstvitel'nosti SKR-lidara pri ispol'zovanii srednego UF-diapazona dlin voln // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 70–74; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Experimental estimation of the sensitivity of the UV Raman lidar // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 320–325.
  15. Carter J.C., Angel S.M., Lawrence-Snyder M., Scaffidi J., Whipple R.E., Reynolds J.G. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small raman instrument // Appl. Spectrosc. 2005. V. 59, N 6. P. 769–775.
  16. Jander P., Noll R. Automated detection of fingerprint traces of high explosives using ultraviolet Raman spectroscopy // Appl. Spectrosc. 2009. V. 63, N 5. P. 559–563.
  17. Moros J., Lorenzo J.A., Novotný K., Laserna J.J. Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting // J. Raman Spectrosc. 2013. V. 44, N 1. P. 121–130.
  18. Pettersson A., Johansson I., Wallin S., Nordberg M., Ostmark H. Near real time standoff detection of explosives in a realistic outdoor environment at 55 m distance // Propellants, Explos., Pyrotech. 2009. V. 34, N 4. P. 297–306.
  19. Pettersson A., Wallin S., Östmark H., Ehlerding A., Johansson I., Nordberg M., Ellis H., Al-Khalili A. Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection // Proc. SPIE. 2010. V. 7664. P. 76641K.
  20. Forest R., Babin F., Gay D., Hô N., Pancrati O., Deblois S., Désilets S., Maheux J. Use of a spectroscopic lidar for standoff explosives detection through Raman spectra // Proc. SPIE. 2012. V. 8358. P. 83580M-1– 83580M-10.
  21. Panchenko Y.N., Andreev M.V., Dudarev V.V., Iva-nov N.G., Pavlinskii A.V., Puchikin A.V., Bobrovni-kov S.M., Gorlov E.V., Zharkov V.I., Losev V.F. Narrow-band tunable laser for a lidar facility // Russ. Phys. J. 2012. V. 55, N 6. P. 609–615.
  22. Seuthe T., Grehn M., Mermillod-Blondin A., Eichler H.J., Bonse J., Eberstein M. Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy //  Opt.  Mater.  Express.  2013.  V. 3,  N 6.  P. 755–764.
  23. Gaft M., Nagli L. UV gated Raman spectroscopy for standoff detection of explosives // Opt. Mater. 2008. V. 30, N 11. P. 1739–1746.
  24. Lazernyj kontrol' atmosfery / Pod red. Je.D. Hinkli. M.: Mir, 1979. 416 p.

Back