Vol. 30, issue 08, article # 9

Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Remote detection of traces of high energetic materials on an ideal substrate using the Raman effect. // Optika Atmosfery i Okeana. 2017. V. 30. No. 08. P. 691–695 [in Russian].
Copy the reference to clipboard

We present experimental results on the remote detection of surface traces of some high energetic materials using a Raman lidar designed on the basis of an excimer KrF laser with a narrow generation line and a multi-channel spectrum analyzer based on diffraction spectrograph and time gated CCD camera. Sensitivity of the system is evaluated for the detection range 10 m. A detection limit of 0.5 μg/cm2 is reached for the surface density of traces of nitrogen-containing chemical materials at the signal accumulation over 1000 laser pulses.


lidar, Raman scattering, remote detection, high energetic materials


  1. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
  2. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
  3. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 20° C: A unique scheme for remote detection of explosives // Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
  4. Skvorcov L.A. Lazernye metody distancionnogo obnaruzhenija himicheskih soedinenij na poverhnosti tel. Moskva: Tehnosfera, 2014. 208 p.
  5. Ageev B.G., Klimkin A.V., Kurjak A.N., Osipov K.Ju., Ponomarev Ju.N. Distancionnyj detektor opasnyh veshhestv na osnove perestraivaemogo 13С16О2-lazera // Optika atmosf. i okeana. 2017. V. 30, N 3. P. 204–208.
  6. Dionne B.C., Rounbehler D.P., Achter E.K., Hobbs J.R., Fine D.H. Vapor pressure of explosives // J. Energetic Mater. 1986. V. 4, N 1. P. 447–472.
  7. Gresham G.L., Davies J.P., Goodrich L.D., Blackwood L.G., Liu B.Y.H., Thimsen D., Yoo S.H., Hallowell S.F. Development of particle standards for testing detection systems: Mass of RDX and particle size distribution of composition 4 residues // Proc. SPIE. 1994. V. 2276. P. 34–44.
  8. Chirico R., Almaviva S., Colao F., Fiorani L., Nuvoli M., Murra D., Menicucci I., Angelini F., Palucci A. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications // Sensors. 2016. V. 16, N 1. P. 1–18.
  9. Bobrovnikov S., Gorlov E., Zharkov V. Simulation of the Raman lidar signal for localized source of atmospheric pollution // Proc. SPIE. 2014. V. 9292. P. 9292-48.
  10. Ray M.D., Sedlacek A.J. Ultraviolet mini-Raman lidar for stand-off, in-situ identification of chemical surface contaminants // Rev. Sci. Inst. 2000. V. 71, N 9. P. 3485–3489.
  11. Arthur J.S, Mark D.R., Higdon N.S., Richter D.A. Short-range, non-contact detection of surface contamination using Raman lidar // Proc. SPIE. 2001. V. 4577. P. 95–104.
  12. GOST 31581-2012. Lazernaja bezopasnost'. Obshhie trebovanija bezopasnosti pri razrabotke i jekspluatacii lazernyh izdelij.  M.: Standartinform, 2013. 20 p.
  13. SanPiN 5804-91. Sanitarnye normy i pravila ustrojstva i jekspluatacii lazerov. M., 1992. 61 p.
  14. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Jeksperimental'naja ocenka chuvstvitel'nosti SKR-lidara pri ispol'zovanii srednego UF-diapazona dlin voln // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 70–74; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Experimental estimation of the sensitivity of the UV Raman lidar // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 320–325.
  15. Carter J.C., Angel S.M., Lawrence-Snyder M., Scaffidi J., Whipple R.E., Reynolds J.G. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small raman instrument // Appl. Spectrosc. 2005. V. 59, N 6. P. 769–775.
  16. Jander P., Noll R. Automated detection of fingerprint traces of high explosives using ultraviolet Raman spectroscopy // Appl. Spectrosc. 2009. V. 63, N 5. P. 559–563.
  17. Moros J., Lorenzo J.A., Novotný K., Laserna J.J. Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting // J. Raman Spectrosc. 2013. V. 44, N 1. P. 121–130.
  18. Pettersson A., Johansson I., Wallin S., Nordberg M., Ostmark H. Near real time standoff detection of explosives in a realistic outdoor environment at 55 m distance // Propellants, Explos., Pyrotech. 2009. V. 34, N 4. P. 297–306.
  19. Pettersson A., Wallin S., Östmark H., Ehlerding A., Johansson I., Nordberg M., Ellis H., Al-Khalili A. Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection // Proc. SPIE. 2010. V. 7664. P. 76641K.
  20. Forest R., Babin F., Gay D., Hô N., Pancrati O., Deblois S., Désilets S., Maheux J. Use of a spectroscopic lidar for standoff explosives detection through Raman spectra // Proc. SPIE. 2012. V. 8358. P. 83580M-1– 83580M-10.
  21. Panchenko Y.N., Andreev M.V., Dudarev V.V., Iva-nov N.G., Pavlinskii A.V., Puchikin A.V., Bobrovni-kov S.M., Gorlov E.V., Zharkov V.I., Losev V.F. Narrow-band tunable laser for a lidar facility // Russ. Phys. J. 2012. V. 55, N 6. P. 609–615.
  22. Seuthe T., Grehn M., Mermillod-Blondin A., Eichler H.J., Bonse J., Eberstein M. Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy //  Opt.  Mater.  Express.  2013.  V. 3,  N 6.  P. 755–764.
  23. Gaft M., Nagli L. UV gated Raman spectroscopy for standoff detection of explosives // Opt. Mater. 2008. V. 30, N 11. P. 1739–1746.
  24. Lazernyj kontrol' atmosfery / Pod red. Je.D. Hinkli. M.: Mir, 1979. 416 p.