Vol. 30, issue 08, article # 7

Lukin I.P. Coherence of Bessel-Gaussian beams propagating in the turbulent atmosphere. // Optika Atmosfery i Okeana. 2017. V. 30. No. 08. P. 672–681 [in Russian].
Copy the reference to clipboard
Abstract:

Coherent properties of vortex Bessel-Gaussian beams propagating in the turbulent atmosphere are theoretically studied. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of the optical radiation field. The behavior of coherence degree, coherence length and integral scale of coherence degree of vortex Bessel-Gaussian beams depending on parameters of a beam and characteristics of the turbulent atmosphere is particularly considered. It is shown that the coherence length, and integral scale of coherence degree of a vortex Bessel-Gaussian beam essentially inversely depend on the topological charge of a vortex beam. Thus, in process of increase in a topological charge of a vortex beam the increase in reduction of values of coherence radius and integral scale of coherence degree of a vortex Bessel-Gaussian beam becomes less. The value of the given effect also essentially depends on characteristics of the turbulent atmosphere: at weak and strong fluctuations of optical radiation the given effect is not great, it reaches a maximum in the transition region from weak to strong fluctuations of optical radiation.

Keywords:

Bessel beam, vortex beam, optical radiation, atmospheric turbulence, coherence, coherence length, integral scale of coherence degree

References:

  1. Miller U. Simmetrija i razdelenie peremennyh. M.: Mir, 1981. 342 p.
  2. Andrews D.L. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. New York: Academic Press, 2008. 341 p.
  3. Aksenov V.P., Poguca Ch.E. Vlijanie opticheskogo vihrja na sluchajnye smeshhenija lagerra-gaussova lazernogo puchka, rasprostranjajushhegosja v turbulentnoj atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 7. P. 561–565; Aksenov V.P., Pogutsa Ch.E. The effect of optical vortex on random Laguerre-Gauss shifts of a laser beam propagating in a turbulent atmosphere // Atmos. Ocean. Opt. 2013. V. 26, N 1. P. 13–17.
  4. Banah V.A., Falic A.V. Ushirenie Lagerrova puchka v turbulentnoj atmosfere // Optika i spektroskopija. 2014. V. 117, N 6. P. 969–975.
  5. Falic A.V. Bluzhdanie i fluktuacii intensivnosti fokusirovannogo lagerra-gaussova puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 763–771.
  6. Banah V.A., Gerasimova L.O. Difrakcija korotkoimpul'snogo lagerr-gaussova puchka // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 311–316; Banakh V.A., Gerasimova L.O. Diffraction of short-pulse Laguerre-Gaussian beams // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 441–446.
  7. Marakasov D.A., Rychkov D.S. Ocenka izmenenija jeffektivnogo radiusa metodom linij toka dlja osesimmetrichnyh lazernyh puchkov v turbulentnoj atmosfere // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 317–322; Marakasov D.A., Rychkov D.S. Estimate of the change in the effective beam width by the streamline method for axisymmetric laser beams in a turbulent atmosphere // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 447–451.
  8. Banah V.A., Gerasimova L.O., Falic A.V. Statistika impul'snyh lagerr-gaussovyh puchkov v turbulentnoj atmosfere // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 369–376.
  9. Xie Ch., Giust R., Jukna V., Furfaro L., Jacquot M., Lacourt P., Froehly L., Dudley J., Couairon A., Courvoisier F. Light trajectory in Bessel–Gauss vortex beams // J. Opt. Soc. Am. A. 2015. V. 32, N 7. P. 1313–1316.
  10. Birch P., Ituen I., Young R., Chatwin Ch. Long-distance Bessel beam propagation through Kolmogorov turbulence // J. Opt. Soc. Am. A. 2015. V. 32, N 11. P. 2066–2073.
  11. Cheng M., Guo L., Li J., Huang Q. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence // J. Opt. Soc. Am. A. 2016. V. 33, N 8. P. 1442–1450.
  12. Chen Sh., Li Sh., Zhao Y., Liu J., Zhu L., Wang A., Du J., Shen L., Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation // Opt. Lett. 2016. V. 41, N 20. P. 4680–4683.
  13. Zhang Y., Ma D., Yuan X., Zhou Z. Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere // Appl. Opt. 2016. V. 55, N 32. P. 9211–9216.
  14. Doster T., Watnik A.T. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: Аnalysis of channel efficiency // Appl. Opt. 2016. V. 55, N 36. P. 10239–10246.
  15. Born M., Vol'f Je. Osnovy optiki. M.: Nauka, 1973. 720 p.
  16. Wolf E. Introduction to the theory of coherence and polarization of light. Cambridge, UK: Cambridge University Press, 2007. 222 p.
  17. Gbur G., Visser T.D. The structure of partially coherent fields // Prog. Opt. / E. Wolf (ed.). Amsterdam: Elsevier, 2010. V. 55. P. 285–341.
  18. Bogatyryova G.V., Fel’de Ch.V., Polyanskii P.V., Ponomarenko S.A., Soskin M.S., Wolf E. Partially coherent vortex beams with a separable phase // Opt. Lett. 2003. V. 28, N 11. P. 878–880.
  19. Gbur G., Visser T.D. Coherence vortices in partially coherent beams // Opt. Commun. 2003. V. 222, N 1–6. P. 117–125.
  20. Gbur G., Visser T.D., Wolf E. “Hidden” singularities in partially coherent wavefields // J. Opt. A: Pure Appl. Opt. 2004. V. 6, N 5. P. S239–S242.
  21. Maleev I.D., Palacios D.M., Marathay A.S., Swartzlander G.A. Spatial correlation vortices in partially coherent light: Theory // J. Opt. Soc. Am. B. 2004. V. 21, N 11. P. 1895–1900.
  22. Ding Ch., Pan L., Lu B. Phase singularities and spectral changes of spectrally partially coherent higher-order Bessel-Gauss pulsed beams // J. Opt. Soc. Am. A. 2009. V. 26, N 12. P. 2654–2661.
  23. Eyyuboglu H.T., Baykal Y., Cai Y. Complex degree of coherence for partially coherent general beams in atmospheric turbulence // J. Opt. Soc. Amer. A. 2007. V. 24, N 9. P. 2891–2901.
  24. Martinez-Herrero R., Manjavacas A. Overall second-order parametric characterization of light beams propagating through spiral phase elements // Opt. Commun. 2009. V. 282, N 4. P. 473–477.
  25. Borghi R., Santarsiero M., Gori F. Axial intensity of apertured Bessel beams // J. Opt. Soc. Am. A. 1997. V. 14, N 1. P. 23–26.
  26. Chen B., Chen Z., Pu J. Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere // Opt. Laser Technol. 2008. V. 40, N 6. P. 820–827.
  27. Zhu K., Zhou G., Li X., Zheng X., Tang H. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere // Opt. Express. 2008. V. 16, N 26. P. 21315–21320.
  28. Rytov S.M., Kravcov Ju.A., Tatarskij V.I. Vvedenie v statisticheskuju radiofiziku. Part 2. Sluchajnye polja. M.: Nauka, 1978. 464 p.
  29. Belen'kij M.S., Lukin V.P., Mironov V.L., Pokasov V.V. Kogerentnost' lazernogo izluchenija v atmosfere. Novosibirsk: Nauka, 1985. 176 p.
  30. Gradshtejn I.S., Ryzhik I.M. Tablicy integralov, summ, rjadov i proizvedenij. M: Nauka, 1971. 1108 p.

Back