Vol. 33, issue 05, article # 7

Minin I. V., Minin O. V., Geints Yu. E., Panina E. K., Karabchevsky A. Optical manipulation of micro- and nano-objects based on structured mesoscale particles: brief review. // Optika Atmosfery i Okeana. 2020. V. 33. No. 05. P. 373–378. DOI: 10.15372/AOO20200507 [in Russian].
Copy the reference to clipboard


The spatial resolution of conventional optics, which is necessary for non-destructive capture of microobjects, is limited by diffraction to a value equal to half the radiation wavelength. Despite this limitation, the use of optical methods is one of the main directions in biological and biomedical research, since only optical methods have a minimal impact on living organisms. Rapid progress in this area is largely based on the development of new optical technologies. Significant progress in mesoscale photonics has allowed researchers to develop methods for controlling structured beams for optical traps. Some recent trends in the field of optical manipulation based on mesoscale dielectric particles are analyzed mainly based on our studies.


mesoscale element, dielectric particle, optical power, photonic nanojet, photon hook, optical manipulation


  1. Lebedew P. Untersuchungen liber die Dnickkräfte des Lichtes // Annalen der Physik. 1901. Fasc. 4, Bd 6. P. 433–458.
  2. Gao D., Ding W., Nieto-Vesperinas M., Ding X., Rahman M., Zhang T., Lim C.T., Qiu C.-W. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects // Light: Sci. & Appl. 2017. V. 6. DOI: 10.1038/lsa.2017.39
  3. Rodriguez-Sevilla P., Labrador-Paez L., Jaque D., Haro-Gonzalez P. Optical trapping for biosensing: materials and applications // J. Mater. Chem. B. 2017. V. 5, P. 9085–9101.
  4. Kotsifaki D.G., Chormaic S.N. Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects // Nanophotonics. 2019. V. 8, N 7. P. 1227–1245.
  5. Stelzer E.H.K. Beyond the diffraction limit? // Nature. 2002. V. 417. P. 806–807.
  6. Rubinsztein-Dunlop H.,  Forbes A., Berry M.V., Dennis M.R., Andrews D.L., Mansuripur M., Denz C., Alpmann C., Banzer P., Bauer T., Karimi E., Marrucci L., Padgett M., Ritsch-Marte M., Litchinitser N.M., Bigelow N.P., Rosales-Guzmán C., Belmonte A., Torres J.P., Neely T.W., Baker M., Gordon R., Stilgoe A.B., Romero J., White A.G., Fickler R., Willner A.E., Xie G., McMorran B., Weiner A.M. Roadmap on structured light // J. Opt. 2017. V. 19. P. 013001.
  7. Brasselet E. Structured light: Optomechanical tomography // Nature Phys. 2016. V. 12, N 8. P. 725.
  8. Shi H., Bhattacharya M. Optomechanics based on angular momentum exchange between light and matter // J. Phys. B. 2016. V. 49. P. 153001.
  9. Sukhov S., Dogariu A. Negative nonconservative forces: Optical 'tractor beams' for arbitrary objects // Phys. Rev. Lett. 2011. V. 107, N 20. Art. 203602. 
  10. Dogariu A., Sukhov S., Saenz J. Optically induced 'ne­gative forces' // Nature Photonics. 2013. V. 7, N 1. P. 24–27
  11. Brzobohatý O., Karásek V., Šiler M., Chvátal L., Čiž­már T., Zemánek P. Experimental demonstration of optical transport, sorting and self-arrangement using a 'tractor beam' // Nature Photonics. 2013. V. 7, N 2. P. 123–127.
  12. Heifetz A., Kong S., Sahakian A., Taflove A., Backman V. Photonic nanojets // J. Comput. Theor. Nano­sci. 2009. V. 6. P. 1979–1992.
  13. Geints Yu.E., Panina E.K., Zemlyanov A.A. Control over parameters of photonic nanojets of dielectric microspheres // Opt. Communs. 2010. V. 283. P. 4775–4781.
  14. Gejnc Yu.E, Panina E.K., Zemlyanov A.A. Sravnitel'nyj analiz klyuchevyh parametrov fotonnyh nanostruj ot osesimmetrichnyh nesferichnyh chastic // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 706–710; Geints Yu.E., Panina E.K., Zemlyanov A.A. Comparative Analysis of Key Parameters of Photonic Nanojets from Axisymmetric Nonspherical Microparticles // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 41–44.
  15. Luk'yanchuk B., Paniagua-Domínguez R., Minin I.V., Minin O.V., Wang Z. Refractive index less than two: photonic nanojets yesterday, today and tomorrow // Opt. Mater. Express. 2017. V. 7. P. 1820–1847.
  16. Wang Z., Luk’yanchuk B., Yue L., Paniagua-Domínguez R., Yan B., Monks J., Minin O.V., Minin I.V., Huang S., Fedyanin A. High order Fano resonances and giant magnetic fields in dielectric microspheres // Sci. Rep. 2019. V. 9, iss. 20293.
  17. Wang B., Shen L., He S. Superlens Formed by a One-dimensional Dielectric Photonic Crystal // J. Opt. Soc. Am. B. 2008. V. 25. P. 391–395.
  18. Minin I.V., Minin O.V., Triandaphilov Y.R., Kotlyar V.V. Focusing properties of two types of diffractive photonic crystal lens // Opt. Memory Neural Networks. 2008. V. 17. P. 244–248.
  19. Gaufillet F., Akmansoy E. Design and experimental evidence of a flat graded-index photonic crystal lens // J. Appl. Phys. 2013. V. 14. DOI: 10.1063/1.4817368.
  20. Minin I.V., Minin O.V., Gagnon N., Petosa A. FDTD analysis of a flat diffractive optics with sub-Reyleigh limit resolution in MM/THz waveband // Digest of the Joint 31st Intern. Conf. on Infrared and Millimeter Waves and 14th Inter. Conf. on Terahertz Electronics. Shanghai, China. September, 2006. P. 170.
  21. Minin I.V., Minin O.V. 3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction // Chin. Opt. Lett. 2014. V. 12, N 6. URL: http://www.opticsjournal.net/ViewFullPDF.htm?aid=OJ140530000016bHeKgN (last access: 21.01.2020).
  22. Zhu Y., Zhou S., Wang Z., Yu Y., Yuan W., Liu W. Investigation on Super-Resolution Focusing Performance of a TE-Polarized Nanoslit-Based Two-Dimensional Lens // Nanomaterials. 2020. V. 10, N 1. DOI: 10.3390/ nano10010003.
  23. Chen K.R. Focusing of light beyond the diffraction limit of half the wavelength // Opt. Lett. 2010. V. 35. P. 3763–3765.
  24. Ishii S., Kildishev A.V., Shalaev V.M., Drachev V.P. Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals // Laser Phys. Lett. 2011. V. 8. P. 828–832.
  25. Mote R.G., Minin O.V., Minin I.V. Focusing behavior of 2-dimensional plasmonic conical zone plate // Opt. Quant. Electron. 2017. V. 49, N 8. P. 271–275.
  26. Jin L., Zhu Q.Y., Fu Y.Q., Yu W.X. Flat lenses constructed by graded negative index-based photonic crystals with tuned configurations // Chin. Phys. B. 2013. V. 22, N 10. P. 104101.
  27. Li Y.H., Fu Y.Q., Minin O.V., Minin I.V. Ultrasharp nanofocusing of graded index photonic crystalbased lenses perforated with optimized single defect // Opt. Mater. Express. 2016. V. 6. P. 2628–2636.
  28. Cao Y., Liu Z., Minin O.V., Minin I.V. Deep subwavelength-scale light focusing and confinement in nanohole-structured mesoscale dielectric spheres // Nanomaterials. 2019. V. 9, N 2. DOI: 10.3390/nano9020186.
  29. Minin I.V., Minin O.V., Cao Y., Liu Z., Geints Y., Karabchevsky A. Optical vacuum cleaner by optomechanical manipulation of nanoparticles using nanostructured mesoscale dielectric cuboid // Sci. Rep. 2019. V. 9, iss. 12748.
  30. Wang C.-S., Otani Y. Removal of nanoparticles from gas streams by fibrous filters: a review // Indust. Engin. Chem. Res. 2013. V. 52, N 1. P. 5–17.
  31. Erickson D., Serey X., Chen Y.F., Mandal S. Nanomanipulation using near field photonics // Lab Chip. 2011. V. 11. P. 995–1009.
  32. Li Y.-C., Xin H.-B., Lei H.-X., Liu L.-L., Li Y.-Z., Zhang Y., Li B.-J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet // Light: Sci. Appl. 2016. N 5. P. e16176.
  33. Zhao X., Zhao N., Shi Y., Xin H., Li B. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation // Micromachines. 2020. N 11. P. 114.
  34. Li Y., Xin H., Zhang Y., Lei H., Zhang T., Ye H., Saenz J.J., Qiu C.-W., Li B. Living Nanospear for Near-Field Optical Probing // ACS Nano. 2018. V. 12, N 11. P. 10703–10711.
  35. Minin I.V., Minin O.V. Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit. Springer, 2016. 75 p.
  36. Yue L., Minin O.V., Wang Z., Monks J., Shalin A., Minin I.V. Photonic hook: a new curved light beam // Opt. Lett. 2018. V. 43, P. 771–774.
  37. Ang A., Karabchevsky A., Minin I.V., Minin O.V., Sukhov S., Shalin A. Photonic Hook based optomechanical nanoparticle manipulator // Sci. Rep. 2018. V. 8, iss. 2029.
  38. Minin I.V., Minin O.V., Katyba G., Chernomyrdin N., Kurlov V., Zaytsev K., Yue L., Wang Z., Christodoulides D. Experimental observation of a photonic hook // Appl. Phys. Lett. 2019. V. 114. P 031105.
  39. Dholakia K., Bruce G. Optical hooks // Nat. Photonics. 2019. V. 13. P. 229–230.
  40. Minin I.V., Minin O.V., Ponomarev D.S., Glinskiy I.A. Photonic hook plasmons: a new curved surface wave // Annalen der Physik. 2018. V. 530, N 12. P. 1800359.
  41. Rubio C., Tarrazó-Serrano D., Minin O.V., Uris A., Minin I.V. Acoustical hooks: a new subwavelength self-bending beam // Results in Phys. 2020. V. 16.  P. 102921.
  42. Xing E., Gao H., Rong J., Khew S., Liu H., Tong C., Hong M. Dynamically tunable multi-lobe laser generation via multifocal curved beam // Opt. Express. 2018. V. 26, iss. 23. P. 30944–30951.
  43. Yang P., Twardowski P., Duo G.Y., Fontaine J., Lecler S. Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder // Opt. Express. 2018. V. 26, iss. 4. P. 3723–3731.
  44. Huang Y., Zhen Z., Shen Y., Min C., Veronis G. Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm // Opt. Express. 2019. V. 27, iss. 2. P. 1310–1325.
  45. Minin I.V., Minin O.V. Subwavelength self-bending structured light beams // Proc. of the Fourth Russian-Belarusian Workshop “Carbon nanostructures and their electromagnetic properties”. Tomsk. April, 2019. P. 52–57.
  46. Minin I.V., Minin O.V. Dielectric particle-based strategy to design a new self-bending subwavelength structured light beams // Proc. the 14th Intern. Forum on Strategic Technology (IFOST 2019). Tomsk: TPU Publishing House, 2019. P. 23.
  47. Gu G., Shao L., Song J., Qu J., Zheng K., Shen X., Peng Z., Hu J., Chen X., Chen M., Wu Q. Photonic hooks from Janus microcylinders // Opt. Express. 2019. V. 27, N 26. P. 37771–37780.
  48. Shen X., Gu G., Shao L., Peng Z., Hu J., Bandyopadhyay S., Liu Y., Jiang J., Chen M. Twin photonic hook generated by twin-ellipse microcylinder // IEEE Photonics. 2020. DOI: 10.1109/JPHOT.2020.2966782.
  49. Ma X., Guo Y., Pu M., Jin J.J., Gao P., Li X., Luo X. Tunable Optical Hooks in the Visible Band Based on Ultra-Thin Metalenses // Ann. Phys. 2019. P. 1900396.
  50. Ang A.S., Minin I.V., Minin O.V., Sukhov S.V., Shalin A., Karabchevsky A. Low-contrast photonic hook manipulator for cellular differentiation // Proc. of the 9th Intern. Conf. on Metamaterials, Photonic crystals and Plasmonics, Marseille, France. June, 2018. P. 7–8.
  51. Cui X., Erni D., Hafner C. Optical forces on metallic nanoparticles induced by a photonic nanojet // Opt. Express. 2008. V. 16. P. 13560–13568.
  52. Wang H., Wu X., Shen D. Trapping and manipulating nanoparticles in photonic nanojets // Opt. Lett. 2016. V. 41. N 7. P. 1652–1655.
  53. Minin I.V., Minin O.V., Pacheсo-Peña V., Beruete M. Subwavelength, standing-wave optical trap based on photonic jets // Quant. Electron. 2016. V. 46. N 6. P. 555–557.
  54. Li Y., Xin H., Liu X., Zhang Y., Lei H., Li B. Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array // ACS Nano. 2016. V. 10, N 6. P. 5800–5808.
  55. Geints Yu.E., Zemlyanov A.A. Metalens optical 3D-trapping and manipulating of nanoparticles. // J. Opt. 2018. V. 20. P. 075102.
  56. Patel H.S., Majumder S. K. Photonic nanojet: generation, manipulation and applications // RRCAT newsletter. 2018. V. 31, N 2. P. 24–33.
  57. Neves A.A.R. Photonic nanojets in optical tweezers // J. Quant. Spectrosc. Radiat. Trans. 2015. V. 162. P. 122–132.
  58. Du B., Xia J., Wu J., Zhao J., Zhang H. Switchable Photonic Nanojet by Electro-Switching Nematic Liquid Crystals // Nanomaterials. 2019. V. 9, N 1. P. 72.
  59. Zhu J., Goddard L.L. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets // Nanoscale Advances. 2019. V. 1, N 12. P. 4615–4643.
  60. Chen R., Lin J., Jin P., Cada M., Ma Y. Photonic nanojet beam shaping by illumination polarization engineering // Opt. Commun. 2020. N 456. P. 124593.
  61. Minin O.V., Minin I.V., Kharitoshin N. Microcubes Aided Photonic Jet Scalpel Tips for Potential Use in Ultraprecise Laser Surgery // Proc. 2015 Intern. Conf. on Biomedical Engineering and Computational Technologies (SIBIRCON). Novosibirsk, Russia. October, 2015. P. 18–21.