Vol. 33, issue 05, article # 8

Geints Yu. E., Zemlyanov A. A., Panina E. K. Features of light absorption by spherical microcapsules with metal nanoinclusions. // Optika Atmosfery i Okeana. 2020. V. 33. No. 05. P. 379–385. DOI: 10.15372/AOO20200508 [in Russian].
Copy the reference to clipboard


The light absorption efficiency of a hollow spherical microparticle (microcapsule) doped with strongly absorbing gold nanoparticles of spherical and cylindrical spatial shapes is studied. By means of the FDTD numerical simulations, the absorption spectra of a doped microcapsule in the visible and near-IR spectral regions (from 0.5 to 0.9 mm) are calculated. It is found that the absorption efficiency of the capsule depends on the nanoinclusions morphology. In particular, there is a noticeable increase in capsule absorption in the regions of resonant excitation of surface plasmon modes of nanoparticles. The dispersion of absorption decreases with an increase in the volume content of nanoparticles in the microcapsule, as well as with the mixing of nanoinclusions of various shapes (spheres + rods). In this case, it becomes possible to obtain a capsule absorption spectrum close to uniform in the wavelength range under study.


microcapsule, nanoparticle, light absorption, plasmon resonance, effective medium


1. Langer R., Tirrell D.A. Designing materials for biology and medicine // Nature. 2004. V. 428. P. 487–492.
2. Miyazawa K., Yajima I., Kaneda I., Yanaki T. Preparation of a new soft capsule for cosmetic // J. Cosmet. Sci. 2000. V. 51. P. 239–252.
3. Pavlov A.M., Gabriel S.A., Sukhorukov G.B., Gould D.J. Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules // Nanoscale. 2015. V. 7. P. 9686–9693.
4. Rosenberg M., Lee S-J. Water-insoluble, Whey protein-based microspheres prepared by an all-aqueous process // J. Food Sci. 2004. V. 69. DOI: 10.1111/j.1365-2621.2004.tb17867.x.
5. Galanzha E.I., Weingold R., Nedosekin D.A., Sarimollaoglu M., Kuchyanov A.S., Parkhomenko R.G., Plekhanov A.I., Stockman M.I., Zharov V.P. Spaser as novel versatile biomedical tool // Nat. Commun. 2017. DOI: 10.1038/neomms15528.
6. Wang W., Duan W., Ahmed S., Mallouk T.E., Sen A. Small power: Autonomous nano- and micromotors propelled by self-generated gradients // Nano Today. 2013. V. 8. P. 531–554.
7. Ungaro F., d’Angelo I., Miro A., La Rotonda M.I., Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: Challenges and promises // J. Pharm. Pharmacol. 2012. V. 64, N 9. P. 1217–1235.
8. Timin A.S., Gao H., Voronin D.V., Gorin D.A., Sukhorukov G.B. Inorganic/organic multilayer capsule composition for improved functionality and external triggering // Adv. Mater. Interfaces. 2017. V. 4, N 1. I: 10.1002/ admi.201600338 (2016).
9. Esser-Kahn A.P., Odom S.A., Sottos N.R., White S.R., Moore J.S. Triggered release from polymer capsules // Macromolecules. 2011. V. 44. P. 5539–5553.
10. Timin A.S., Gould D.J., Sukhorukov G.B. Multi-layer microcapsules: Fresh insights and new applications // Expert Opin. Drug Delivery. 2017. V. 14, N 5. P. 583–587. DOI: 10.1080/17425247.2017.1285279
11. Geints Yu.E., Zemlyanov A.A. Optimal conditions for laser-induced heating of a double-shell spherical nanocapsule // J. Appl. Phys. 2014. V. 121. P. 123111. DOI: 10.1063/1.4979095
12. Yi Q., Sukhorukov G.B. UV-induced disruption of microcapsules with azobenzene groups // Soft Matt. 2014. V. 10, N 9. P. 1384–1391.
13. Gao H., Wen D., Tarakina N.V., Liang J., Bushbya A.J., Sukhorukov G.B. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectro­lyte microcapsules // Nanoscale. 2016. V. 8. P. 5170–5180. DOI: 10.1039/c5nr06666b.
14. Skirtach A.G., Javier A.M., Kreft O., Köhler K., Alberola A.P., Möhwald H., Parak W.J., Sukhorukov G.B. Laser-induced release of encapsulated materials inside living cells // Angew. Chem. 2006. V. 45, N 28. P. 4612–4617.
15. Anandhakumar S., Vijayalakshmi S.P., Jagadeesh G., Raichur A.M. Silver nanoparticle synthesis: novel route for laser triggering of polyelectrolyte capsules // ACS Appl. Mater. Interfaces. 2011. V. 3, N 9. P. 3419–24. DOI: 10.1021/am200651t.
16. Skirtach A.G., Antipov A.A., Shchukin D.G., Sukhorukov G.B. Remote activation of capsules containing Ag nanoparticles and IR dye by laser light // Langmuir. 2004. V. 20, N 17. P. 6988–6992.
17. Deng L., Li Q., Al-Rehili S., Haneen O., Almalik A., Alshamsan A., Zhang J., Khashab N.M. Hybrid iron oxide–graphene oxide–polysaccharides microcapsule: a micro-matryoshka for on-demand drug release and antitumor therapy in vivo // ACS Appl. Mater. Interfaces. 2016. V. 8, N 11. P. 6859–6868.
18. Kassing R., Petkov P., Kulisch W., Popov C. Functional Properties of Nanostructured Materials. Springer, 2006. P. 75–110.
19. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Berlin: Springer, 1995. 535 p.
20. Katawa S. Near-Field Optics and Surface Plasmon Polaritons. Berlin, New York: Springer, 2001. 214 p.
21. Link S., El-Sayed M.A. Shape and size dependence of radioactive, non-radioactive and photothermal properties of gold nanocrystals // Int. Rev. Phys. Chem. 2000. V. 19, N 3. P. 409–453.
22. Hu M., Chen J., Li Z.-Y., Au L., Hartland G.V., Li X., Marquez M., Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications // Chem. Soc. Rev. 2006. V. 35. P. 1084–1094.
23. Liu F., Smallwood G.J. Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 2. P. 302–308.
24. Johnson P.B., Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6. P. 4370–4379.
25. Xie B., Ma L., Zhao J., Liu L. Dependent absorption property of nanoparticle clusters: an investigation of the competing effects in the near field // Opt. Express. 2019. V. 27. P. A280–A291.
26. Le K.Q., Alu A. Fano-induced solar absorption enhancement in thin organic photovoltaic cells // Appl. Phys. Lett. 2014. V. 105. P. 141118.
27. Zadeh S.H., Rashidi-Huyeh M., Palpant B. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance // J. Appl. Phys. 2017. V. 122. P. 163108.
28. Malynych S., Chumanov G. Light-induced coherent interactions between silver nanoparticles in twodimensional arrays // J. Am. Chem. Soc. 2003. V. 125, N 10. P. 2896–2898.