Vol. 33, issue 05, article # 4

Aksenov V. P., Dudorov V. V., Kolosov V. V., Pogutsa Ch. E., Abramova E. S. Detection of the orbital angular momentum of a laser beam by means of its decomposition into optical vortices and its use in a communication system in the turbulent atmosphere. // Optika Atmosfery i Okeana. 2020. V. 33. No. 05. P. 347–357. DOI: 10.15372/AOO20200504 [in Russian].
Copy the reference to clipboard


The numerical simulation of the operation of an optical data transmission system operating through an open atmospheric channel with information coding by the magnitude of the orbital angular momentum (OAM) has been performed. Two methods for detecting OAM based on representing the complex amplitude of the field of a laser beam transmitted through a layer of a turbulent atmosphere in the form of a superposition of a finite number of azimuthal modes (optical vortices) are considered. A statistical analysis of the dependence of the reception frequency of OAM recorded with errors due to atmospheric turbulence on the turbulence strength is performed. The analysis was carried out for a sample of 5000 random realizations of the complex field amplitude during the propagation of a laser beam along an atmospheric path with fixed turbulent parameters. Options and potential possibilities of hardware implementation of the methods proposed are discussed. Their effectiveness is compared.


orbital angular momentum, optical vortex, statistical characteristics, turbulent atmosphere, optical communication, Laguerre–Gaussian beam, azimuthal modes


1. Gibson G., Courtial J., Padgett M.J., Vasnetsov M., Pasko V., Barnett S.M., Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum // Opt. Express. 2004. V. 12. P. 5448–5456.
2. Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Bao C., Li L., Cao Y., Zhao Z., Wang J., Lavery M.P.J., Tur M., Ramachandran S., Molisch A.F., Ashrafi N., Ashrafi S. Optical communications using orbital angular momentum beams // Adv. Opt. Photon. 2015. V. 7. P. 66–106.
3. Alperin S.N., Niederriter R.D., Gopinath J.T., Siemens M.E. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens // Opt. Lett. 2016. V. 41, iss. 21. P. 5019–5022.
4. Volyar A., Bretsko M., Akimova Ya., Egorov Yu. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront // Opt. Lett. 2018. V. 43. P. 5635–5638.
5. Kotlyar V.V., Kovalev A.A., Porfirev A.P. Calculation of fractional orbital angular momentum of superpositions of optical vortices by intensity moments // Opt. Express. 2019. V. 27. P. 11236–11251.
6. Dudley A., Litvin I. A., Forbes A. Quantitative measurement of the orbital angular momentum density of light // Appl. Opt. 2012. V. 51. P. 823–833.
7. Charnotskii M.I., Brennan T.J. Shack–Hartmann measurements of the transverse linear and orbital angular momenta after propagation through turbulence // Proc. SPIE. 2017. V. 10408. P. 104080L.
8. Kotlyar V.V., Khonina S.N., Soifer V.A. Light field decomposition in angular harmonics by means of diffractive optics // J. Mod. Opt. 1998. V. 45, N 7. P. 1495–1506.
9. Khonina S.N., Kotlyar V.V., Soifer V.A., Pääkkönen P., Simonen J., Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics // J. Mod. Opt. 2001. V. 48, N 10. P. 1543–1557.
10. Aksenov V.P., Kolosov V.V., Pogutsa C.E. The influence of the vortex phase on the random wandering of a Laguerre–Gaussian beam propagating in a turbulent atmosphere: A numerical experiment // J. Opt. 2013. V. 15. P. 044007.
11. Yao A.M., Padgett M.J. Orbital angular momentum: Origins, behavior and applications // Adv. Opt. Photon. 2011. V. 3. P. 161–204.
12. Shen Y., Wang X., Xie Z., Min C., Fu X. Liu Q., Gong M., Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light Sci. Appl. 2019. V. 8, N 90. DOI: 10.1038/s41377-019-0194-2.
13. Zhu L., Wang J. A review of multiple optical vortices generation: Methods and applications // Front. Optoelectron. 2019. V. 12. P. 52–68.
14. Chen M.L.M., Jiang L.J., Sha W.E.I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces // Appl. Sci. 2018. V. 8, N 3. Р. 362.
15. Aksenov V.P., Dudorov V.V., Filimonov G.A., Kolosov V.V., Venediktov V.Yu. Vortex beams with zero orbital angular momentum and non-zero topological charge // Opt. Laser Technol. 2018. V. 104. P. 159–163.
16. Molina-Terriza G., Torres J.P., Torner L. Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum // Phys. Rev. Lett. 2002. V. 88, N 1. P. 013601.
17. Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication // Phys. Rev. Lett. 2005. V. 94. P. 153901.
18. Fleck J.A., Morris J.R., Feit M.D. Time-dependent propagation of high energy laser beams through the atmosphere // Appl. Phys. 1976. V. 10. P. 129–160.
19. Konyaev P.A., Lukin V.P. Thermal distortions of focused laser beams in the atmosphere // Appl. Opt. 1985. V. 24, N 4. P. 415–421.
20. Andrews L., Phillips R. Laser Beam Propagation through Random Media. Belingham, WA: SPIE Opt. Eng. Press, 2005. 820 p.
21. Aksenov V.P. Fluctuations of orbital angular momentum of vortex laser-beam in turbulent atmosphere // Proc. SPIE. 2005. V. 5892, N 58921Y.
22. Aksenov V.P., Kolosov V.V., Filimonov G.A., Pogutsa C.E. Orbital angular momentum of a laser beam in a turbulent medium: preservation of the average value and variance of fluctuations // J. Opt. 2016. V. 18. 6 pp.
23. Kendall M.G., Stuart A. The Advanced Theory of Statistics, Volume 2: Inference and Relationship. New York: Hafner Publishing Company, 1961. 676 p.
24. Korn G., Korn T. Tabl. 18.7-2(2.b), 18.7-3(2.b) // Spravochnik po matematike dlya nauchnyh rabotnikov i inzhenerov. M.: Nauka, 1973. 832 p.