Vol. 33, issue 03, article # 14

Dyakov Yu.A., Adamson S.O., Golubkov G.V., Nabiev Sh.Sh., Andrienko O.S., Asratyan A.A., Kazaryan S.M., Gubanova D.P., Kazaryan M.A., Golubkov M.G. Changes in the aromaticity and chemical properties of pentalene and its derivatives formed by burning of organic fuel under the UV radiation and ionization. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 232–238 [in Russian].
Copy the reference to clipboard

The chemical properties of pentalene and its isomers, as well as their cations, are considered. Pentalene is a chemically active compound that plays an important role in the formation and destruction of polyaromatic hydrocarbons (PAHs), which are the main components of soot microparticles. They arise during the combustion of fossil fuels and are considered as the most dangerous for human health anthropogenic aerosol atmospheric pollutants. The phenomenon of shift of aromatic/anti-aromatic properties of pentalene and its derivatives upon ionization (changes in the number of p-electrons) is also discussed.


pentalene, benzocyclobutadiene, phenylacetylene, aromaticity, reaction rate constants, RRKM calculations


  1. Dockery D.W., Pope C.A., Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G., Speizer F.E. An association between air pollution and mortality in six U.S. cities // N. Engl. J. Med. 1993. V. 329. P. 1753–1759.
  2. Miller F.J., Gardner D.E., Graham J.A., Lee Jr.R.E., Wilson W.E. Bachmann J.D. Size considerations for establishing a standard for inhalable particles // J. Air Pollut. Control Assoc. 1979. V. 29. P. 610–615.
  3. Siegmann K., Siegmann H.C. Molecular precursor of soot and quantification of the associated health risk // Current problems in condensed matter. New York: Plenum Press, 1998. P. 143–60.
  4. Richter H., Howard J.B. Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames // Prog. Energy Comb. Sci. 2000. V. 26. P. 565–608.
  5. Richter H., Howard J.B. Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways // Phys. Chem. Chem. Phys. 2002. V. 4. P. 2038–2055.
  6. Dyakov Y.A., Ni C.K., Lin S.H., Lee Y.T., Mebel A.M. Photodissociation of azulene at 193 nm: Ab initio and RRKM study // J. Phys. Chem. A. 2005. V. 109. P. 8774–8784.
  7. Dyakov Y.A., Ni C.K., Lin S.H., Lee Y.T., Mebel A.M. Acetylene elimination processes from neutral and positively charged azulene: Ab initio and RRKM study // J. Chinese Chem. Soc. 2006. V. 53, N 1. P. 161–168.
  8. Dyakov Y.A., Ni C.K., Lin S.H., Lee Y.T., Mebel A.M. Ab initio and RRKM study of photodissociation of azulene cation // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1404–1415.
  9. Kislov V.V., Mebel A.M. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: An ab initio/RRKM study of 9-H-fulvalenyl (C5H5–C5H4) radical rearrangements // J. Phys. Chem. A. 2007. V. 111. P. 9532–9543.
  10. Ni C.K., Tseng C.M., Lin M.F., Dyakov Y.A. Photodissociation dynamics of small aromatic molecules studied by multimass ion imaging // J. Phys. Chem. B. 2007. V. 111. P. 12631–12642.
  11. Lin M.F., Tseng C.M., Dyakov Y.A., Ni C.K. Photostability of amino acids: Internal conversion versus dissociation // J. Chem. Phys. 2007. V. 126. Art. N 241104.
  12. Mebel A.M., Kislov V.V. Can the C5H5 → C5H5 / C10H10 → C10H9 + H / C10H8 + H2 reaction produce naphthalene? An ab initio/RRKM study // J. Phys. Chem. A. 2009. V. 113. P. 9825–9833.
  13. Dyakov Y.A., Bagchi A., Lee Y.T., Ni C.K. Photodissociation dynamics of benzoic acid // J. Chem. Phys. 2010. V. 132. Art. N 014305.
  14. Yang Y.L., Dyakov Y., Lee Y.T., Ni C.K., Sun Y.L., Hu W.P. Photodissociation dynamics of hydroxybenzoic acids // J. Chem. Phys. 2011. V.134. Art. N 034314.
  15. Mebel A.M., Landera A. Product branching ratios in photodissociation of phenyl radical: A theoretical ab initio/Rice–Ramsperger–Kassel–Marcus study // J. Chem. Phys. 2012. V. 136. Art. N 234305.
  16. Hsu H.C., Tsai M.T., Dyakov Y.A., Ni. C.K. Energy transfer of highly vibrationally excited molecules studied by crossed molecular beam/time-sliced velocity map ion imaging // Int. Rev. Phys. Chem. 2012. V. 31. P. 201–233.
  17. Galimova G.R., Azyazov V.N., Mebel A.M. Reaction mechanism, rate constants, and product yields for the oxidation of cyclopentadienyl and embedded five-member ring radicals with hydroxyl // Combust. Flame. 2018. V. 187. P. 147–164.
  18. Zhao L., Kaiser R.I., Xu B., Ablikim U., Ahmed M., Zagidullin M.V., Azyazov V.N., Howlader A.H., Wnuk S.F., Mebel A.M. VUV photoionization study of the formation of the simplest polycyclic aromatic hydrocarbon: Naphthalene (C10H8) // J. Phys. Chem. Lett. 2018. V. 9. P. 2620−2626.
  19. Hsu H.C., Tsai M.T., Dyakov Y., Ni C.K. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene // Phys. Chem. Chem. Phys. 2011. V. 13. P. 8313–8321.
  20. Dyakov Y.A., Adamson S.O., Golubkov G.V., Gubanova D.P., Kazaryan M.A., Kazaryan S.M., Andrienko O.S., Golubkov M.G. Changing the aromaticity properties of small organic molecules after the ionization // Proc. SPIE. 2019. V. 11322. Art. N 113221Q.
  21. Hückel E. Quantum-theoretical contributions to the benzene problem. I. The electron configuration of benzene and related compounds // Z. Phys. 1931. V. 70. P. 204–286.
  22. Philis J., Drougas E., Kosmas A.M. The (Lb)S1 ← S0 transition of phenylpropyne and phenylacetylene: An experimental and ab initio study // Chem. Phys. 2004. V. 306. P. 253–263.
  23. Sorkhabi O., Qi F., Rizvi A.H., Suits A.G. The ultraviolet photochemistry of phenylacetylene and the enthalpy of formation of 1,3,5-hexatriyne // J. Am. Chem. Soc. 2001. V. 123. P. 671–676.
  24. Eyring H., Lin S.H., Lin S.M. Basic Chemical Kinetics. New York: Wiley, 1980.
  25. Robinson P.J., Holbrook K.A. Unimolecular Reactions. New York: Wiley, 1972.
  26. Steinfeld J.I., Francisco J.S., Hase W.L. Chemical Kinetics and Dynamics. Upper Saddle River, NJ: Prentice Hall, 1999.
  27. Kislov V.V., Nguyen T.L., Mebel A.M., Lin S.H., Smith S.C. Photodissociation of benzene under collision-free conditions: An ab initio/Rice–Ramsperger–Kassel–Marcus study // J. Chem. Phys. 2004. V. 120. P. 7008–7017.
  28. Sharifi M., Kong F, Chin S.L., Mineo H., Dyakov Y., Mebel A.M., Chao S.D., Hayashi M., Lin S.H. Experimental and theoretical investigation of high-power laser ionization and dissociation of methane // J. Phys. Chem. A. 2007. V. 111. P. 9405–9416.
  29. Baboul A.G., Curtiss L.A., Redfern P.C., Raghavachari K. Gaussian-3 theory using density functional geometries and zero-point energies // J. Chem. Phys. 1999. V. 110. N 16. P. 7650-7657.
  30. Curtiss L.A., Raghavachari K., Redfern P.C., Baboul A.G., Pople J.A. Gaussian-3 theory using coupled cluster energies // Chem. Phys. Lett. 1999. V. 314, N 1-2. P. 101–107.
  31. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 09, Revision A.02. Wallingford CT: Gaussian Inc., 2009.
  32. Wang Q.Q., Wu D., Jin M.X., Liu F.C., Hu F.F, Cheng X.H., Liu H., Hu Z., Ding D.J., Mineo H., Dyakov Y.A., Mebel A.M., Chao S.D., Lin S.H. Experimental and theoretical investigations of ionization/dissociation of cyclopentanone molecule in a femtosecond laser field // J. Chem. Phys. 2008. V. 129. Art. N 204302.
  33. Wang Q.Q., Wu D., Jin M.X., Liu F.C., Hu F.F, Cheng X.H., Liu H., Hu Z., Ding D.J., Mineo H., Dyakov Y.A., Mebel A.M., Chao S.D., Lin S.H. Ionization and dissociation processes of pyrrolidine in intense femtosecond laser field // J. Phys. Chem. C. 2009. V. 113. P. 11805–11815.
  34. Wang Q.Q., Dyakov Y.A., Wu D., Zhang D.D., Jin M.X., Liu F.C., Liu H., Hu Z., Ding D.J., Mineo H., Teranishi Y., Chao S.D., Lin S.H., Cheng X.H., Kosheleva O.K., Mebel A.M. Ionization/dissociation processes of methyl-substituted derivates of cyclopentanone in intense femtosecond laser field // Chem. Phys. Lett. 2013. V. 586. P. 21–28.
  35. Zyubina T.S., Dyakov Y.A., Lin S.H., Bandrauk A.D., Mebel A.M. Theoretical study of isomerization and dissociation of acetylene dication in the ground and excited electronic states // J. Chem. Phys. 2005. V. 123. Art. N 134320.
  36. Mebel A.M., Zyubina T.S., Dyakov Y.A., Bandrauk A.D., Lin S.H. Potential energy surfaces in coulomb explosion of polyatomic molecules: Benzene and cyclohexane trications and acetylene dication // Int. J. Quant. Chem. 2005. V. 102. P. 506–519.