Vol. 33, issue 03, article # 9

Klimkin A.V., Karapuzikov A.A., Kokhanenko G.P., Kuryak A.N., Osipov K.Yu., Ponomarev Yu.N., Zhang Shuo. Use of the long-wave range for remote sensing of atmospheric aerosols. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 205–208 [in Russian].
Copy the reference to clipboard
Abstract:

The results of laboratory experiments on recording the backscattered IR laser radiation from aerosol particles containing organic impurities are presented. The studies were performed at the laboratory test bench according to the lidar sensing scheme along a controlled optical path. Aqueous aerosol and aqueous solutions were used as model media. Aerosol and solutions contained organic impurities: tryptophan, isopropyl alcohol, glycerin, and nicotinamide adenine dinucleotide (NADH). For research in the IR range, the experimental complex was modified. The UV laser was replaced with an IR laser during this upgrade. A liquid-nitrogen-cooled mercury-cadmium-telluride based IR detector was used to record backscatter signals. A possibility of using IR lasers with scanning the radiation frequency for remote sensing of atmospheric organic aerosols is shown.

Keywords:

laboratory simulation, CO2 laser, long-wave lidar, remote sensing

References:

  1. Measures R.M. Laser Remote Sensing: Fundamentals and Applications. Malabar, Florida, USA: Krieger publishing company, 1992. 510 p.
  2. Warren R.E., Vanderbeek R.G., Ben-David A., Ahl J.L. Simultaneous estimation of aerosol cloud concentration and spectral backscatter from multiple-wavelength LIDAR data // Appl. Opt. 2008. V. 47, N 24. P. 4309–4320.
  3.  Swim C., Vanderbeek R., Emge D., Wong A. Overview of chem-bio sensing // Proc. SPIE. 2006. V. 6218, P. 730408.
  4. Gurton K.P., Ligon D., Dalmani R. Measured infrared optical cross sections for a variety of chemical and biological aerosol stimulants // Appl. Opt. 2004. V. 43, N 23. P. 4564–4570.
  5. Richardson J.M., Aldridge J.C., Milstein A.B., Lacirignola J.J. Aerosol elastic scatter signature in the near and mid-wave IR spectral regions // Proc. SPIE. 2009. V. 7323. P. 73230Q-1–9.
  6. Warren R.E., Wanderbeek R.G., Ahl J.L. Detection and classification of atmospheric aerosol using multi-wavelength LWIR LIDAR // Proc. SPIE. 2009. V. 7304. P. 73040E-1–7.
  7. Thrush E., Salciccioli N., Brown D.M., Siegrist C., Brown A.M., Thomas M.E., Boggs N., Carter C.C. Backscatter signatures of biological aerosols in the infrared // Appl. Opt. 2012. V. 51, N 12. P. 1836–1842.
  8. Baxter K., Castle M., Barrington S., Withers P., Foot V., Pigkering A., Felton N. UK small scale UVLIF LIDAR for standoff BW detection // Proc. SPIE. 2007. V. 6739. P. 67390Z-1–10.
  9. Gritsuta A.N., Klimkin A.V., Kokhanenko G.P., Kuryak A.N., Osipov K.Yu., Ponomarev Yu.N., Simonova G.V. Mobile multi-wavelength aerosol lidar // Int. J. Remote Sens. 2018. V. 39, N 24. P. 9400–9414.
  10. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Distantsionnoe obnaruzhenie sledov vysoko-energeticheskih materialov na ideal'noj podlozhke s pomoshch'yu effekta SKR // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 691–695; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Remote Detection of Traces of High-Energy Materials on an Ideal Substrate Using the Raman Effect // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 604–608.
  11. Fiorani L., Colao F., Palucci A. Measurement of Mount Etna plume by CO2-laser-based lidar // Opt. Lett. 2009. V. 34, iss. 6. P. 800–802.
  12. Romanovskij O.A., Sadovnikov S.A., Harchenko O.V., Yakovlev S.V. Distantsionnyj analiz soderzhaniya metana v atmosfere IK-lidarnoj sistemoj differentsial'nogo pogloshcheniya v spektral'nom diapazone 3300–3430 nm // Optika atmosf. i okeana. 2019. V. 32, N 11. P. 896–901.
  13. Hu Yihua, Zhao Xinying, Gu Youlin, Chen Xi, Wang Xinyu, Wang Peng, Zheng Zhiming, Dong Xiao. Significant broadband extinction abilities of bioaerosols // Sci. China Mater. 2019. V. 62, N 7. P. 1033–1045.
  14. Thrush E., Salciccioli N., Brown D.M., Siegrist K., Brown A.M., Thomas M.E., Boggs N., Carter C.C. Backscatter signatures of biological aerosols in the infrared // Appl. Opt. 2012. V. 51, N 12. P. 1836–1842.
  15. Klimkin A., Kokhanenko G., Kuryak A., Osipov K., Sokovikov V., Zhang Shuo. New stand for fluorescence study // Proc. SPIE. 2018. V. 10614. P. 106140S-1–5.

Back