Vol. 33, issue 03, article # 6

Razhev A.M., Churkin D.S., Tkachenko R.A. Inductive nitrogen laser with pulse power of 1 MW. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 188–191 [in Russian].
Copy the reference to clipboard
Abstract:

Lasing energy of 10 mJ was obtained for the first time under nitrogen pumping by a pulsed inductive discharge with a pulsed power higher than 1 MW. The lasing pulse length of the inductive nitrogen laser created was (8.5 ± 0.5) ns (FWHM). The lasing was obtained at two wavelengths of 337.1 and 357.7 nm. The lasing beam had a ring cross section with a diameter of about 33 mm and a width of about 2 mm.

Keywords:

UV inductive nitrogen laser, pulsed inductive cylindrical discharge, generation power, pulse duration, ring-shaped laser beam

References:

  1. Karelin A.V., Shirokov R.V. Rezul'taty chislennogo modelirovaniya gazorazryadnogo He–Ar–N N2 -lazera UF-diapazona // Kvant. elektron. 2009. V. 39, N 8. P. 735–738.
  2. Genin D.E., Panchenko A.N., Tarasenko V.F. i dr. Vliyanie dobavok SF6 i NF3 na rezhimy UF- i IK-generatsii v azote // Kvant. elektron. 2011. V. 41, N 4. P. 360–365.
  3. Sarikhani S., Hariri A. Theoretical study of amplified spontaneous emission using a model based on a geometrically dependent gain coefficient // J. Opt. 2013. V. 15, N 5. Art. N. 085703.
  4. Hongqiang Xie, Guihua Li, Wei Chu, Bin Zeng, Jinping Yao, Chenrui Jing, Ziting Li, Ya Cheng. Backward nitrogen lasing actions induced by femtosecond laser filamentation: Influence of duration of gain // New J. Phys. 2015. V. 17. Art. N 073009.
  5. Kartashov D., Ališauskas S., Pugžlys A., Shneider M.N., Baltuška A. Theory of filament initiated nitrogen laser // J. Phys. B. 2015. V. 48, N 9. Art. N 094016.
  6. Ahmed R., Umar Z.A., Aslam Baig M. Emission intensity enhancement by re-ionization of Nd:YAG laser-produced plasma using a nitrogen laser // Laser Phys. 2019. V. 29, N 5 Art. N 085001.
  7. Dube A., Jayasankar K., Prabakaran L., Kumar V., Gupta P.K. Nitrogen laser irradiation (337 nm) causes temporary inactivation of clinical isolates of Mycobacterium tuberculosis // Lasers Med. Sci. 2004. V. 19, iss. 1. P. 52–56.
  8. Dadge J.W., Krishnamurthy V.N., Aiyer R.C. Nitrogen laser induced fluorescence in laser dyes for sensing of organic compounds // Sens. Actuators B. 2006. V. 113. P. 805–808.
  9. URL: https://www.opto-lab.ru/ru/produktsiya-i-uslugi/lazery/gazovye-lazery/azotnye-lazery/ (last access: 23.12.2019).
  10. URL: http://www.hcei.tsc.ru/ru/cat/technologies/tech23.html (last access: 23.12.2019).
  11. Konovalov I.N., Panchenko A.N., Tarasenko V.F., Tel'minov A.E. Shirokoaperturnyj elektrorazryadnyj azotnyj lazer // Kvant. elektron. 2007. V. 37, N 7. P. 623–627.
  12. Razhev A.M., Telegin G.G. Impul'snye ul'trafioletovye lazery na molekulyarnom azote // Zarubezh. radioelektron. 1978. V. 3. P. 76–94.
  13. Kunabenchi R.S., Gorbal M.R., Savadatti M.I. Nitrogen lasers // Prog. Quant. Electron. 1984. V. 9. P. 259–329.
  14. Ali A.W. A study of the nitrogen laser power density and some design considerations // Appl. Opt. 1969. V. 8, N 5 P. 993–996.
  15. Razhev A.M., Churkin D.S. Induktsionnyj ul'trafioletovyj azotnyj lazer // Pis'ma v ZhETF. 2007. V. 86, N 6. P. 479–483.
  16. Razhev A.M., Churkin D.S., Tkachenko R.A. Kompaktnyj UF azotnyj lazer s nakachkoj impul'snym induktsionnym prodol'nym razryadom // Optika atmosf. i okeana. 2018. V. 31, N 3. P. 182–185; Razhev A.M., Churkin D.S., Tkachenko R.A. Compact UV nitrogen laser pumped by a pulsed longitudinal inductive discharge // Atmos. Ocean. Opt. 2018. V. 31, N 4. P. 414–418.
  17. Razhev A.M., Churkin D.S. Pulsed inductive discharge CO2 laser // Opt. Commun. 2009. V. 282. P. 1354–1357.
  18. Razhev A.M., Churkin D.S., Zhupikov A.A. Issledovanie UF-izlucheniya induktsionnogo azotnogo lazera // Kvant. elektron. 2009. V. 39, N 10. P. 901–905.

Back