Vol. 32, issue 11, article # 11

Krivenok L. A., Suvorov G. G., Avilov V. K., Sirin A. A. Eddy covariance measurement of CO2, CH4, and H2O fluxes: Use of a mobile tower and taking into account the changing fetch. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 942–950. DOI: 10.15372/AOO20191111 [in Russian].
Copy the reference to clipboard

Abstract:

A possibility of short-term (from 1–2 days) eddy covariance measurements with the use of mobile complex of equipment is shown as well as with fetch and wind direction as filtering parameters for flux separation from concrete site (the case of secondary waterlogged peatland in Moscow region). Obtained СО2, СH4, and H2O fluxes allow to deduce diurnal dynamics in different meteorological conditions and from different contiguous areas with one changes in the wind direction. Application of the multiple-stage filtering leads to separate representative amount of 30-minutes average values, which afterwards could be used for analyzing of the dependences between fluxes and ecological parameters, modeling, making estimates for longer periods, comparing with data obtained by chamber method and are complement for the inventory of greenhouse gas sources and sinks.

Keywords:

eddy covariance method, peatland, fluxes, methane, carbon dioxide, water vapor, footprint, fetch, data filtering

References:

  1. 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands / T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, T.G. Troxler (eds) // IPCC. Switzerland, 2014.
  2. Wilson D., Blain D., Couwenberg J., Evans C.D., Murdiyarso D., Page S., Renou-Wilson F., Rieley J., Sirin A., Strack M., Tuittila E.-S. Greenhouse gas emission factors associated with rewetting of organic soils // Mires Peat. 2016. V. 17. P. 1–28.
  3. Joosten H., Sirin A., Couwenberg J., Laine J., Smith P. The role of peatlands in climate regulation // Peatland Restoration and Ecosystem Services: Science, Policy and Practice. Cambridge: Cambridge University Press, 2016. P. 66–79.
  4. Minaeva T.Yu., Sirin A.A. Biologicheskoe raznoobrazie bolot i izmenenie klimata // Uspehi sovr. biol. 2011. V. 131, N 4. P. 393–406.
  5. Pavelka M., Acosta M., Kiese R., Altimir N., Pavelka M., Acosta M., Kiese R., Altimir N., Bruemmer C., Crill P., Darenova E., Fuss R., Gielen B., Graf A., Kle­medtsson L., Lohila A., Longdoz B., Lindroth A., Nilsson M., Jimenez S.M., Merbold L., Montagnani L., Peichl M., Pihlatie M., Pumpanen J., Ortiz P.S., Silvennoinen H., Skiba U., Vestin P., Weslien P., Janous D., Kutsch W. Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems // Int. Agrophys. 2018. V. 32, N 4. P. 569–587.
  6. Nicolini G., Fratini G., Avilov V., Kurbatova J.A., Vasenev I., Valentini R. Performance of eddy-covariance measurements in fetch-limited applications // Theor. Appl. Climatol. 2015. V. 127, N 3–4. P. 829–840.
  7. Foken T. Micrometeorology. Berlin, Heidelberg, Springer: 2017. 362 p.
  8. Burba G.G., Kurbatova Yu.A., Kuricheva O.A., Avilov V.K., Mamkin V.V. Metod turbulentnyh pul'sacij. Kratkoe prakticheskoe rukovodstvo. M.: IPEE im. A.N. Severcova RAN, 2016. 223 p.
  9. Desjardins R.L., Lemon E.R. Limitations of an eddy-correlation technique for the determination of the carbon dioxide and sensible heat fluxes // Bound.-Lay. Meteorol. 1974. V. 5, N 4. P. 475–488.
  10. Fan S.M., Wofsy S.C., Bakwin P.S., Jacob D.J., Anderson S.M., Kebabian P.L., McManus J.B., Kolb C.E. Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra // J. Geophys. Res. D. 1992. V. 97, N 15. P. 16627–16643.
  11. Verma S.B., Ullman F.G., Billesbach D., Clement R.J., Kim J., Verry E.S. Eddy-correlation measurements of methane flux in a northern peatland ecosystem // Bound.-Lay. Meteorol. 1992. V. 58, N 3. P. 289–304.
  12. Schmid H.P. Source areas for scalar and scalar fluxes // Bound.-Lay. Meteorol. 1994. N 67. P. 293–318.
  13. Grelle A., Lindroth A. Eddy-correlation system for long-term monitoring of fluxes of heat, water vapour and CO2 // Glob. Change Biol. 1996. V. 2, N 3. P. 297–307.
  14. Parmentier F.J.W., van Huissteden, van der Molen M.K., Schaepman-Strub G., Karsanaev S.A., Maximov T.C., Dolman A.J. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia // J. Geophys. Res. 2011. V. 116. DOI: 10.1029/2010JG001637.
  15. Scott R.L., Biederman J.A. Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes // Geophys. Res. Lett. 2017. V. 44, N 13. P. 6833–6840.
  16. Zamolodchikov D.G., Gitarskij M.L., Shilkin A.V., Marunich A.S., Karelin D.V., Blinov V.G., Ivashchenko A.I. Monitoring ciklov dioksida ugleroda i vodyanogo para na poligone «log Taezhnyj» (Valdajskij nacional'nyj park) // Fundam. i priklad. klimatol. 2017. V. 1. P. 54–68.
  17. Fortuniak K., Pawlak W., Bednorz L., Grygoruk M., Siedlecki M., Zieliński M. 2017. Methane and carbon dioxide fluxes of a temperate mire in Central Europe // Agric. For. Meteorol. 2017. V. 232. P. 306–318.
  18. Wang M., Wu J., Luan J., Lafleur P., Chen H., Zhu X. Near-zero methane emission from an abandoned boreal peatland pasture based on eddy covariance measurements // PLoS ONE. 2017. V. 12, N 12 URL: https://doi.org/ 10.1371/ journal.pone.0189692 (last access: 25.05.2019)
  19. Ge H.X., Zhang H.S., Zhang H., Cai X.H., Song Y., Kang L. The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method // Agric. For. Meteorol. 2018. V. 249. P. 228–238.
  20. Asaf D., Rotenberg E., Tatarinov F., Dicken U., Montzka S.A., Yakir D. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux // Nat. Geosci. 2013. V. 6, N 3. P. 186.
  21. Rohatyn S., Rotenberg E., Ramati E., Tatarinov F., Tas E., Yakir D. Differential impacts of land use and precipitation on “Ecosystem Water Yield” // Water Resour. Res. 2018. V. 54, N 8. P. 5457–5470.
  22. Chistotin M.V., Sirin A.A., Dulov L.E. Sezonnaya dinamika emissii uglekislogo gaza i metana pri osushenii bolota v Moskovskoj oblasti dlya dobychi torfa i sel'skohozyajstvennogo ispol'zovaniya // Agrohimiya. 2006. N 6. P. 54–62.
  23. Suvorov G.G., Chistotin M.V., Sirin A.A. Poteri ugleroda pri dobyche torfa i sel'skohozyajstvennom ispol'zovanii osushennogo torfyanika v Moskovskoj oblasti // Agrohimiya. 2015, N 11. P. 51–62.
  24. Obvodnenie pozharoopasnyh torfyanikov // Informacionnyj vypusk «O sostoyanii prirodnyh resursov i okruzhayushchej sredy Moskovskoj oblasti v 2016 year». Ministerstvo ekologii i prirodopol'zovaniya Moskovskoj oblasti, 2017. P. 90–96.
  25. Obuhov A.M. Struktura temperaturnogo polya v turbulentnom potoke // Izv. AN SSSR. Ser. Geofizika i geografiya. 1949. V. 13, N 1. P. 58–59.
  26. Monin A.S., Yaglom A.M. Statisticheskaya mehanika. M.: Nauka, 1965. 639 p.
  27. Montgomery R.B. Vertical eddy flux of heat in the atmosphere // J. Meteorol. 1948. V. 5, № 6. P. 265–274.
  28. Swinbank W.C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere // J. Meteorol. 1951. V. 8, N 3. P. 135–145.
  29. Eddy covariance: a practical guide to measurement and data analysis / M. Aubinet, T. Vesala, D. Papale (eds.). Springer Science & Business Media, 2012. 438 p.
  30. Horst T.W., Weil J.C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes // J. Atmos. Ocean. Technol. 1994. V. 11, № 4. P. 1018–1025.
  31. Gash J.H. Observations of turbulence downwind of a forest-heath interface // Bound.-Lay. Meteorol. 1986. V. 36. P. 227–237.
  32. LI‑COR, Inc. 2016. EddyPro® version 6.2 Help and User’s Guide. LI‑COR, Inc. Lincoln, NE [Electronic resource]. URL: https://www.licor.com/env/support/EddyPro/home.html (last access: 25.12.2018).
  33. Plate E.J. Aerodynamic characteristics of atmospheric Boundary Layers. Oak Ridge, Tenn.: USAEC, 1971. 190 p.
  34. Glagolev M.V., Suvorov G.G. Emissiya metana bolotnymi pochvami srednej tajgi Zapadnoj Sibiri (na primere Hanty-Mansijskogo avtonomnogo okruga) // Doklady po ekologicheskomu pochvovedeniyu. 2007. V. 2, N 6. P. 90–162.
  35. Vickers D., Mahrt L. Quality control and flux sampling problems for tower and aircraft data // J. Atmos. Ocean. Technol. 1997. V. 14, N 3. P. 512–526.
  36. Kljun N., Calanca P., Rotach M.W., Schmid H.P. A simple parameterisation for flux footprint predictions // Bound.-Lay. Meteorol. 2004. V. 112, № 3. P. 503–523.
  37. Kormann R., Meixner F.X. An analytical footprint model for non-neutral stratification // Bound.-Lay. Meteorol. 2001. V. 99, N 2. P. 207–224.
  38. Mauder M., Foken T. Documentation and instruction manual of the eddy covariance software package TK2. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 26. 44 p.
  39. Handbook of Micrometeorology. A Guide for Surface Flux Measurement and Analysis / X. Lee, W. Massman, B. Law (eds.). New York: Kluwer Academic Publishers, 2004. 164 p.