Vol. 32, issue 11, article # 4

Tartakovsky V.A., Cheredko N.N., Maksimov V.G. Calculation of mid-latitude temperature by linear transformation of astronomical insolation. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 902–907 [in Russian].
Copy the reference to clipboard
Abstract:

The series of long-term average temperatures obtained at 927 weather stations of the Northern hemisphere from 1955–2014 are compared with the known data on astronomical insolation for the same intervals and localizations. It is shown that the average annual astronomical insolation as a function of latitude subjected to linear transformation should be considered as the average value of long-term average temperatures at weather stations of the corresponding latitudes for the period under consideration, i.e., like mid-latitude temperature. The justification of this result is carried out by regression of the compared data and by grouping the weather stations. The estimates of the increase in the mid-latitude temperature in the period 1985–2014 are compared with those in 1955–1984. The contributions to the temperature variability of the components, determined by astronomical insolation and by stochastic processes in the geosphere, do not contradict well-known estimates, which verifies the introduced linear transformation of astronomical insolation.

Keywords:

astronomical insolation, surface temperature, mid-latitude temperature

References:

  1. Vtoroj otsenochnyj doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossijskoj Federatsii. Obshchee rezyume. M.: Rosgidromet, 2014. 62 p.
  2. Gruza G.V., Ran'kova E.Ya. Nablyudaemye i ozhidaemye izmeneniya klimata Rossii: temperatura vozdukha. Obninsk: VNIIGMI-MTSD, 2012. 194 p.
  3. GISS Surface Temperature Analysis [Electronic resource]. URL: http://data.giss.nasa.gov/gistemp/ (last access: 1.12.2018).
  4. Hansen J., Ruedy R., Sato M., Lo K. Global surface temperature change // Rev. Geophys. 2010. V. 48. DOI: 10.1029/2010RG000345.
  5. Global Average Anomalies [Electronic resource]. URL: http: // www.ncdc.noaa.gov/ oa/ climate/ research/ anomalies / index.htm (last access: 1.12.2018).
  6. Smith T.M., Reynolds R., Peterson T.C., Lawrimore J. Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006) // J. Climatol. 2008. V. 21. P. 2283–2296. DOI: 10.1175/2007JCLI2100.1.
  7. Arhiv Universiteta Vostochnoj Anglii [Elektronnyj resurs]. URL: http://www.metoffice.gov.uk, http:// www.cru.uea.ac.uk (data obrashcheniya: 1.06.2017).
  8. Jones P.D., Lister D.H., Osborn T.J., Harpham C., Salmon M., Morice C.P. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010 // J. Geophys. Res. 2012. V. 117, iss. D5. DOI: 10.1029/2011JD017139.
  9. Gruza G.V., Ran'kova E.Ya., Kleshchenko L.K., Smirnov V.D. O prostranstvennom osrednenii v zadachakh monitoringa klimata // Problemy ekologich. monitoringa i modelir. ekosistem. 2013. V. XXV. P. 42–71.
  10. Vose R.S., Wuertz D., Peterson T.C., Jones P.D. An intercomparison of trends in surface air temperature analyses at the global, hemispheric and grid-box scale // Geophys. Res. Lett. 2005. V. 32. DOI: 10.1029/2005GL023502.
  11. Jones P., New M., Parker D.E., Martin S., Rigor I.G. Surface air temperature and its changes over the past 150 years // Rev. Geophys. 1999. V. 37. DOI: 10.1029/1999RG900002.
  12. Jones P.D., Wigley T.M.L. Estimation of global temperature trends: What’s important and what isn’t // Clim. Change. 2010. V. 100. P. 59–69. DOI: 10.1007/s10584-010-9836-3.
  13. Gandin L.S. Ob"ektivnyj analiz meteorologicheskikh polej. L.: Gidrometeoizdat, 1965. 242 p.
  14. Hansen J.E., Lebedeff S. Global trends of measured surface air temperature // J. Geophys. Res. 1987. V. 92. P. 13345–13372.
  15. Dmitriev V.G. Ob odnoj osobennosti optimal'noj (i drugikh vidov linejnoj) interpolyatsii gidrometeorologicheskikh protsessov i polej // Navigatsiya i gidrografiya. 1995. Iss. 1. P. 99–101.
  16. Jones P.D., Moberg A. Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001 // J. Climate. 2003. V. 16. P. 206–223.
  17. Budyko M.I. O proiskhozhdenii lednikovykh epokh // Meteorol. i gidrol. 1968. N 11. P. 17–19.
  18. Dove H.W. Die Verbreitung der Wȁrme auf der Oberflȁche der Erde: erlȁutert durch Isothermen, thermische Isanomalien und Temperaturcurven. Berlin: Dietrich Reimer Verlag, 1852. 65 S.
  19. Khromov S.P., Petrosyants M.A. Meteorologiya i klimatologiya. M.: Izd-vo MGU, 1994. 520 p.
  20. Zakusilov V.P., Zadorozhnaya T.N., Belkin R.A. Osobennosti dolgotnogo raspredeleniya klimaticheskikh pokazatelej temperatury vozdukha na razlichnykh shirotnykh zonakh Severnogo polushariya // Vzaimosvyaz' nauki i obshchestva: problemy i perspektivy. 2018. P. 26–30.
  21. Fedorov V.M., Grebennikov P.B. Calculation of long-term averages of surface air temperature based on insolation data // Izv. Atmos. Ocean. Phys. 2017. V. 53, N 8. P. 757–768.
  22. Fedorov V.M. Korrelyatsionnyj analiz insolyatsii Zemli i anomalii pripoverkhnostnoj temperatury // Uch. zapiski RGGMU. 2016. N 45. P. 151–166.
  23. Fedorov V.P., Grebennikov P.B. Raschet klimaticheskoj normy pripoverkhnostnoj temperatury vozdukha na osnove insolyatsii // Geofizich. protsessy i biosfera. 2017. V. 16, N 1. P. 5–24. DOI: 10.21455/GPB2017.1-1.
  24. The JPL HORIZONS on-line solar system data and ephemeris computation service provides access to key solar system data and flexible production of highly accurate ephemerides for solar system objects [Electronic resource]. URL: http://ssd.jpl.nasa.gov (last access: 1.12.2018).
  25. Monin A.S. Vrashchenie Zemli i klimat. L.: Gidrometeoizdat, 1972. 112 p.
  26. Solnechnaya radiatsiya i klimat Zemli [Elektronnyj resurs]. URL: http://www.solar-climate.com/sc/bd01.htm (data obrashcheniya: 1.12.2018).
  27. Fedorov V.M. Insolyatsiya Zemli i sovremennye izmeneniya klimata. M.: Fizmatlit, 2018. 232 p.
  28. Semenov S.M. Parnikovyj effekt: otkrytie, razvitie kontseptsii, rol' v formirovanii global'nogo klimata i ego antropogennykh izmenenij // Fund. i prikl. klimatologiya. 2015. V 2. P. 103–126.
  29. Izmeneniya klimata, 2013 year.: Fizicheskaya nauchnaya osnova. Vklad Rabochej gruppy I v Pyatyj otsenochnyj doklad Mezhpravitel'stvennoj gruppy ekspertov po izmeneniyu klimata / T.F. Stoker, D. TSin', Plattner, M.B. Tignor, S.K. Allen, D. Boshung, A. Nauels, Yu. Sya, V. Beks, P.M. Midglej (red.). Kembridzh, N'yu-Jork, SSHA: Cambridge University Press, 2013. 222 p.

Back