Vol. 29, issue 07, article # 7

Katsev I.L., Zege E.P., Prikhach A.S. Atmosphere aerosol microphysical model for Belarus and adjacent regions. // Optika Atmosfery i Okeana. 2016. V. 29. No. 07. P. 572-578 [in Russian].
Copy the reference to clipboard
Abstract:

This paper presents a statistical microphysical model of atmospheric aerosols for the spring-summer-autumn period for the territory of Belarus and Poland developed at the base of long-term measurements at AERONET stations, carried out in Minsk and in Belsk (Poland). This model can be used for atmospheric correction of the Earth satellite monitoring data. Under this model aerosol consists of two fractions (fine and coarse), each of them having a lognormal particle size distribution, a fixed average size and rms, and fixed values of the real and imaginary parts of the refractive index. An aerosol coarse fraction consists of two components, containing spherical and non-spherical (spheroidal) particles. The only variable parameter of this model is the ratio of volume concentrations of fine and coarse fractions. It is shown that the parameters of the developed Belarus and Poland aerosol model are very close to those for the moderately absorbing aerosol model used for West Europe.

Keywords:

aerosol atmosphere, atmospheric correction, regional model

References:

  1. Dubovik O., Herman M., Holdak A., Lapyonok T., Tanre D., Deuze J.L., Ducos F., Sinyuk A., Lopatin A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations // Atmos. Measur. Techol. 2011. V. 4. P. 975–1018. DOI: 10.5194/amt-4-975-2011.
  2. Satellite aerosol remote sensing over land / A.A. Kokhanovsky, G. de Leeuw (Eds.). Berlin: Springer-Praxis, 2009. 388 p.
  3. Kokhanovsky A.A., Davis A.B., Cairns B., Dubovik O, Hasekamp O.P., Sano I., Mukai S., Rozanov V.V., Litvinov P., Lapyonok T., Kolomiets I.S., Oberemok Y.A., Savenkov S., Martin W., Wasilewski A., Noia A.Di, Stap F.A., Rietjens J., Xu F., Natraj V., Duan M., Cheng T., Munro R. Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric frontier // Earth-Sci. Rev. 2015. V. 145. P. 85–116. DOI: 10.1016/j.earscirev.2015.01.012.
  4. CIMEL Electronique. URL: http://www.cimel.fr/ ?lang=en
  5. Dubovik O. Optimization of numerical inversion in photopolarimetric remote sensing, in photopolarimetry in remote sensing / G. Videen, Y. Yatskiv, M. Mishchenko (Eds.). Dordrecht, Netherlands: Kluwer Academic Publishers, 2004. P. 65–106.
  6. Dubovik O., Sinyuk A., Lapyonok T., Holben B.N., Mishchenko M., Yang P., Eck T.F., Volten H., Munoz O., Veihelmann B., van der Zande W.J., Leon J.-F., Sorokin M., Slutsker I. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust // J. Geophys. Res. 2006. V. 111. D11208. DOI: 10.1029/2005JD006619.
  7. Levy R.C., Remer L., Mattoo S., Vermote E., Kaufman Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance // J. Geophys. Res. 2007. V. 112. D13211. DOI: 10.1029/2006JD007811.
  8. Levy R.C. The dark-land MODIS collection 5 aerosol retrieval: Algorithm development and product evaluation // Satellite Aerosol Remote Sensing over Land / A.A. Kokhanovsky, G. de Leeuw (Eds.). Berlin: Springer-Praxis, 2009. P. 33–82.
  9. Kannel M., Ohvril H., Okulov O., Kattai K., Neiman L. Spectral aerosol optical depth prediction by some broadband models. Validation with AERONET observations // Proc. of the Estonian Academy of Sciences. 2014. V. 63, N 4. P. 404–416.

Back