Vol. 26, issue 09, article # 4

Romanov N.P., Borodin S.A., Dubnichenko S.O., Novikova L.D. Large-scale structure and asymptotic regularities of phase scattering function for water in the visible spectrum range. // Optika Atmosfery i Okeana. 2013. V. 26. No. 09. P. 734-748 [in Russian].
Copy the reference to clipboard

The analysis of mechanisms of radiation scattered in the range of angles Θ from 0 to 180° is made for a sphere by comparing the exact phase scattering functions calculated with the Mie theory and interference phase scattering functions with the use of diffraction and partial rays of geometric optics (GO). In view of refinements of relative phase shifts of all rays and the amplitude of the diffraction ray, it appeared that large-scale oscillation regularities of the exact phase scattering function at high Mie parameters x corresponded to the interference pattern of two or three rays mentioned above. For integral characteristics a computation error with the interference formulae in the range of angles θ= 0 10° does not exceed units of percent for х > 10 and within the large x values it tends to zero. For other ranges, depending on the difference in the combination of the integer parts parity in the intervals of the total scattering angle tendency of oscillation periods over the angle to zero is seen according to the laws of х-1, х-2/3 (rainbows) and х-1/2. The oscillation period over x begins to depend only on θ. The results of the calculations of exact phase scattering functions average over the intervals Δθ=10÷15° for the refraction index m = 4/3 are presented in the form of approximation relationships with the asymptotic tendency to the GO phase scattering function.


phase scattering function, interference, diffraction, geometrical optics, Mie theory


1. Hjulst G., van de. Rassejanie sveta malymi chasticami. M.: Izdatelstvo inostr. literatury, 1961. 536 p.
2. Boren K., Hafmen D. Pogloshhenie i rassejanie sveta malymi chasticami. M.: Mir, 1986. 660 p.
3. Wiscombe W.J. Improved Mie scattering algorithms // Appl. Opt. 1980. V. 19, N 9. P. 1505–1509.
4. Romanov N.P. Issledovanie metodov i pogreshnostej vychislenija funkcij Rikkati–Besselja // Optika atmosf. i okeana. 2007. V. 20, N 8. P. 701–709.
5. Glantschning W.J., Chen S.-H. Light scattering from water droplets in the geometrical optics approximation // Appl. Opt. 1981. V. 20, N 14. P. 2499–2509.
6. Ungut A., Grehan G., Gouesbet G. Comparisons between geometrical optics and Lorenz–Mie theory // Appl. Opt. 1981. V. 20, N 17. P. 2911–2918.
7. Bosch H.F.M., Ptasinski K.J., Kerkhof P.J.A.M. Edge contribution to forward scattering by spheres // Appl. Opt. 1996. V. 35, N 13. P. 2285–2291.
8. Zhou X., Li S., Stamnes K. Geometrical-optical code for computing the optical properties of large dielectric spheres // Appl. Opt. 2003. V. 42, N 21. P. 4295–4306.
9. Romanov N.P. Metodika rascheta i svojstva indikatris rassejanija prozrachnyh sharov v priblizhenii geometricheskoj optiki // Optika atmosf. i okeana. 2009. V. 22, N 5. P. 435–444.
10. Romanov N.P., Dubnichenko S.O. Fizika obrazovanija i analiticheskoe opisanie svojstv glorii // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 549–560.
11. Korn G., Korn T. Spravochnik po matematike. M.: Fizmatlit, 1978. 832 p.
12. Adam J.A. Geometric optics and rainbows: generalization of a result by Huygens // Appl. Opt. 2008. V. 47, N 34. P. H11–H13.
13. Gorelik G.S. Kolebanija i volny. 3-e izd. M.: Fizmatlit, 2007. 655 p.
14. Ru T. Wang, Hulst H.C., van de. Rainbows: Mie computations and the Airy approximation // Appl. Opt. 1991. V. 30, N 1. P. 106–117.
15. Grossman M., Schmidt E., Haussmann A. Photographic evidence for third-order rainbow // Appl. Opt. 2011. V. 50, N 28. P. 134–141.
16. Nevzorov A.N. O teorii i fizike obrazovanija glorii // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 344–348.
17. Born M., Vol'f Je. Osnovy optiki. M.: Nauka, 1970. 856 p.
18. Sagedhi I., Munoz A., Laven P., Jarosz W., Seron F., Gutierrez D., Jensen H.W. Physically-Based Simulation of Rainbows // ACM Transactions on Graphics. 2011. V. 31, N 1. Р. 1–12.
19. Laven P. Simulation of rainbows, coronas and glories by use of Mie theory // Appl. Opt. 2003. V. 42, N 3. P. 436–444.
20. Dubnichenko S.O., Romanov N.P. Interferencionnaja struktura i asimptoticheskie zakonomernosti rassejanija sveta kapljami vody // Tezisy dokl. XVIII Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery». Irkutsk, july 2012. P. 27.
21. Borodin S.A., Romanov N.P. Interferencionnaja struktura rassejanija sveta slabopogloshhajushhih sharov v oblasti difrakcionnogo maksimuma // Tezisy dokl. XVIII Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery». Irkutsk, july 2012. P. 20–21.