Vol. 37, issue 04, article # 6

Slyunko E. S., Yudin N. N., Kalygina V . M., Knyazkova A. I ., Snegerev M. S., Zinoviev M. M., Kuznetsov V. S., Podzyvalov S. N., Lysenko A. B., Kalsin A. Yu., Gabdrakhmanov A. Sh. Effect of diffusion doping of ZnGeP2 with Mg and Ca atoms on the optical properties of single crystals. // Optika Atmosfery i Okeana. 2024. V. 37. No. 04. P. 302–306. DOI: 10.15372/AOO20240406 [in Russian].
Copy the reference to clipboard

Abstract:

The influence of Mg and Ca atoms on the optical breakdown threshold of a nonlinear ZnGeP2 crystal at a wavelength of 2.097 mm is studied. An impurity was introduced using diffusion doping; the material was sputtered onto a ZnGeP2 substrate, followed by annealing in vacuum at a temperature of 750 °C for 200 hours. It is shown that the introduction of Mg into a single crystal increases the optical breakdown threshold by 31%. When ZnGeP2 is doped with Ca atoms, the opposite trend is observed. It is suggested that due to the creation of additional channels for energy dissipation of radiative and fast non-radiative relaxation processes through impurity energy levels, the optical breakdown threshold changes, which requires experimental confirmation.

Keywords:

optical breakdown, ZnGeP2, nonlinear crystal, diffusion doping, impurity atom, thermal diffusion

References:

1. Nikogosyan D.N. Nonlinear Optical Crystals: A complete survey. USA: Springer Science Business Media, 2005. 427 p.
2. Boyd G.D., Buehler E., Storz F.G. Linear and nonlinear optical properties of ZnGeP2 and CdSe // Appl. Opt. 1971. V. 18. P. 301–304.
3. Dmitriev V.G., Gurzadyan G.G., Nikogosyan D.N. Spravochnik po nelineinym opticheskim kristallam. M.: Radio i svyaz', 1991. 160 p.
4. Rud' V.Yu. Optoelektronnye yavleniya v difosfide tsinka i germaniya // Fizika i tekhnika poluprovodnikov. 1994. V. 28, N 12. P. 1105–1148.
5. Mason P.D., Jsckson D.J., Gorton E.K. CO2 laser frequency doubling in ZnGeP2 // Opt. Commun. 1994. V. 110. P. 163–166.
6. Vodop'yanov K.L., Voevodin V.G., Gribenyukov A.I., Kulevskii L.A. Vysokoeffektivnaya pikosekundnaya parametricheskaya superlyuminestsentsiya v kristalle ZnGeP2 v diapazone 5–6.3 mm // Kvant. elektron. 1987. V. 14, N 9. P. 1815–1819.
7. Henriksson M., Tiihonen M., Pasiskevicius V., Laurell F. ZnGeP2 parametric oscillator pumped by a line width narrowed parametric 2 mm source // Opt. Lett. 2006. V. 31. P. 1878–1880.
8. Blake N., Gaifulina R., Griffin L.D., Bell I.M., Thomas G.M. Machine learning of Raman spectroscopy data for classifying cancers: A review of the recent literature // Diagnostics. 2022. V. 12. P. 1491.
9. Knyazkova A.I. Investigation of the Raman scattering spectra of ZnGeP2 crystals // Proc. SPIE. 2022. V. 12341. P. 139–142.
10. Bussière B., Utéza O., Sanner N., Sentis M., Riboulet G., Vigroux L., Commandré M., Wagner F., Natoli J.Y., Chambare J.P. Bulk laser-induced damage threshold of titanium-doped sapphire crystals // Appl. Opt. 2012. V. 51, N 32. P. 7826–7833.