Vol. 37, issue 03, article # 7

Smalikho I. N., Banakh V. A., Sherstobitov A. M. Estimation of the signal-to-noise ratio from raw data measured by a pulsed coherent Doppler lidar under conditions of non-stationary noise. // Optika Atmosfery i Okeana. 2024. V. 37. No. 03. P. 234–243. DOI: 10.15372/AOO20240307 [in Russian].
Copy the reference to clipboard

Abstract:

The key factor determining the accuracy of pulsed coherent Doppler lidar (PCDL) wind speed measurements is the signal-to-noise ratio (SNR). Therefore, SNR information is important for interpreting measurement results. However, the known approaches to determining SNR from raw data measured by PCDL are not applicable in the case of a PCDL lidar created at the Wave Propagation Laboratory of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, (WPL PCDL lidar) due to significant non-stationarity of the noise component of recorded signals. In this work, a new technique for determining the signal-to-noise ratio from raw data measured by a pulsed Doppler lidar (PCDL) accounting the non-stationarity of noise is developed. The technique was tested in an experiment with a Stream Line PCDL and the WPL PCDL lidar. By comparing SNR estimates from joint measurements by these lidars, the practical applicability of the suggested technique is confirmed.

Keywords:

coherent Doppler lidar, signal-to-noise ratio non-stationary noise, radial velocity

References:

1. Frehlich R.G., Hannon S.M., Henderson S.W. Performance of a 2-mm coherent Doppler lidar for wind measurements // J. Atmos. Ocean. Technol. 1994. V. 11, N 6. P. 1517–1528.
2. Banakh V.A., Smalikho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoi atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
3. Kameyama S., Ando T., Asaka K., Hirano Y., Wadaka S. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing // Appl. Opt. 2007. V. 46, N 11. P. 1953–1962.
4. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
5. Dolfi-Bouteyre A., Canat G., Valla M., Augere B., Besson C., Goular D., Lombard L., Cariou J.P., Durecu A., Fleury D., Bricteux L., Brousmiche S. Pulsed 1.5-mm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier // IEEE J. Sel. Top. Quantum Electron. 2009. V. 15. P. 441–450.
6. Wu S., Liu B., Liu J., Zhai X., Feng C., Wang G., Zhang H., Yin J., Wang X., Li R., Gallacher D. Wind turbine wake visualization and characteristics analysis by Doppler lidar // Opt. Express. 2016. V. 24, N 10. P. A762-80. DOI: 10.1364/OE.24.00A762.
7. Vasiljevic N., Lea G., Courtney M., Cariou J.P., Mann J., Mikkelsen T. Long-range WindScanner System // Remote Sens. 2016. V. 8. P. 896. DOI: 10.3390/rs8110896.
8. Stephan A., Wildmann N., Смалихо И.Н. Эффективность метода МФАС для определения вектора скорости ветра из измерений лидаром Windcube 200s // Оптика атмосф. и океана. 2018. Т. 31, № 9. С. 725–733; Stephan A., Wildmann N., Smalikho I.N. Effectiveness of the MFAS method for determining the wind velocity vector from Windcube 200s lidar measurements // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 555–563.
9. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. DOI: 10.5194/amt-9-5239-2016.
10. Banakh V.A., Nadeev A.I., Razenkov I.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Test results of a pulsed coherent Doppler lidar created at the Institute of Atmospheric Optics SB RAS // Proc. SPIE. 2019. V. 11208. P. 112085K-1–9. DOI: 10.1117/12.2540944.
11. Smalikho I.N., Banakh V.A., Razenkov I.A., Sukharev A.A., Falits A.V., Sherstobitov A.M. Sravnenie rezul'tatov sovmestnykh izmerenii skorosti vetra kogerentnymi doplerovskimi lidarami Stream Line i LRV // Optika atmosf. i okeana. 2022. V. 35, N 10. P. 826–835; Smalikho I.N., Banakh V.A., Razenkov I.A., Sukharev A.A., Falits A.V., Sherstobitov A.M. Comparison of results of joint wind velocity measurements with the Stream Line and WPL coherent Doppler lidars // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S79–S91. DOI: 10.1134/S1024856023010177.
12. Frehlich R.G., Kavaya M.J. Coherent laser radar performance for general atmospheric turbulence // Appl. Opt. 1991. V. 30. P. 5325–5337.