Vol. 36, issue 12, article # 10

Troitskii V. O. Effect of laser beam amplitude profile on second harmonic generation efficiency. // Optika Atmosfery i Okeana. 2023. V. 36. No. 12. P. 1027–1037. DOI: 10.15372/AOO20231210 [in Russian].
Copy the reference to clipboard

Abstract:

Efficiency of laser radiation harmonic generation in nonlinear crystals is among topical issues in applied nonlinear optics. This work theoretically studies the second harmonic generation (SHG) in a converging (focused into a crystal) laser beam. The influence of the amplitude profile (AP) of fundamental laser radiation beam (before a lens) on the SHG efficiency and on optimal focusing and wave detuning parameters is estimated for the first time. It is ascertained that the optimal values of focusing and especially wave detuning parameters vary in very wide ranges depending on the AP. Strong influence of the AP on the effective aperture length, which mainly limits the SHG efficiency, is shown. Optimization of the AP enables increasing the SHG efficiency by no more than ~ 10%.

Keywords:

second harmonic generation, nonlinear wave equation, numerical method, optimal focusing, optimal laser beam amplitude profile

References:

1. Gattass R., Mazur E. Femtosecond laser micromachining in transparent materials // Nat. Photon. 2008. V. 2. P. 219–225. DOI: 10.1038/nphoton.2008.47.
2. Esserman L., Conradson S. Potential medical applications of UV free-electron lasers. FC6. 1988 // Proc. Free-Electron Laser Applications in the Ultraviolet, 2–5 March 1988, Cloudcroft, New Mexico, United States. 175–176 pp.
3. Bolanos J., Morris K., Sanchez E., Arevalo I., Yamamoto V., Kateb B., Kumar L. UV Imaging for intraoperative Tumor delineation. 2023 // 20th Annual World Congress of SBMT, February 2023. DOI: 10.13140/RG.2.2.25245.18405.
4. Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optiko-elektronnaya svyaz' v UF-diapazone na rasseyannom lazernom izluchenii // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 559–562; Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optoelectronic UV communication on scattered laser radiation // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 698–701.
5. Gregor E., Sorce J., Palombo K.V., Mordaunt D.W., Ehritz M. UV laser source for remote spectroscopy by multiple nonlinear conversion of a Nd:YAG laser. 1994. P. 367–369. DOI: 10.1109/NLO.1994.470777.
6. Kimmelma O., Tittonen I., Buchter S. Passively Q-switched Nd:YAG pumped UV lasers at 280 and 374 nm // Opt. Commun. 2009. V. 282. P. 2930–2933. DOI: 10.1016/j.optcom.2009.04.004.
7. Prasad N.S., Armstrong D.J., Edwards W.C., Singh U.N. Single-mode, all-solid-state Nd:YAG laser pumped UV converter // Proc. of the 24th International Laser Radar Conference, june 23–27, 2008, Boulder, USA (2008). DI 20080023790.
8. Elaev V.F., Lyah G.D., Pelenkov V.P. CuBr-lazer so srednej moshchnost'yu generatsii svyshe 100 W // Optika atmosf. i okeana. 1989. V. 2, N 11. P. 1228–1230.
9. Kostadinov I.K., Temelkov K.A., Astadjov D.N., Slaveeva S.I., Yankov G.P., Sabotinov N.V. High-power copper bromide vapor laser // Opt. Commun. 2021. V. 501. P. 127363.
10. Brown D., Withford M. High-average-power (15-W) 255 nm source based on second harmonic generation of a copper laser master oscillator power amplifier system in cesium lithium borate // Opt. Lett. 2001. V. 26, N 3. P. 1885–1887.
11. Coutts D.W. Optimization of line-focusing geometry for efficient nonlinear frequency conversion from Copper Vapor Laser // IEEE J. Quantum. Electron. 1995. V. 31, N 12. P. 2208–2214.
12. Evtushenko G.S., Troitskii V.O. X Effective conversion of copper vapor laser emission in a b–BaB2O4 crystal // J. Russ. Laser Res. 1994. V. 15, N 1. P. 28–33.
13. Dmitriev V.G., Tarasov L.V. Prikladnaya nelinejnaya optika. 2-e izd. M.: Fizmatlit, 2004. 512 p.
14. Boyd G.D., Kleinman D.A. Parametric interaction of focused Gaussian light beams // J. Appl. Phys. 1968. V. 39, N 8. P. 3597–3639.
15. Kolosov V.V., Troitskij V.O. Optimal'naya fokusirovka puchka pri generatsii vtoroj garmoniki v odnoosnom kristalle. Priblizhenie zadannogo polya // Optika atmosf. i okeana. 2007. V. 20, N 2. P. 106–112.
16. Troitskii V.O. Nekotorye voprosy optimal'noj fokusirovki pri generatsii vtoroj garmoniki v nelinejnyh kristallah. Part 2. Rezul'taty chislennyh raschetov // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 941–949; Troitskii V.O. Some problems of optimum focusing in the process of second harmonic generation in nonlinear crystals. Part 2. Results of numerical calculations // Atmos. Ocean. Opt. 2016. V. 29, N 2. P. 199–207.
17. Troitskii V.O. Osobennosti generatsii vtoroj garmoniki lazernogo izlucheniya pri uglah sinhronizma, blizkih k 90° // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 601–607; Troitskii V.O. Generation peculiarities of the second harmonics laser radiation at synchronism angles close to 90° // Atmos. Ocean. Opt. 2011. V. 24, N 1. P. 102–108.
18. Troitskii V.O. Optimizatsiya volnovoj rasstrojki pri effektivnoj generatsii vtoroj garmoniki // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 25–31; Troitskii V.O. Optimization of wave detuning during effective second harmonic generation // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 238–244.
19. Nikogosyan D.N. Materialy dlya nelinejnoj optiki // Kvant. elektron. 1997. N 1. P. 5–25.
20. Troitskii V.O. Optimizatsiya protsessa generatsii vtoroj garmoniki pri ogranichennoj plotnosti moshchnosti osnovnogo izlucheniya. Part 2 // Optika atmosf. i okeana. 2022. V. 35, N 4. P. 271–278; Troitskii V.O. Second harmonic generation optimization under limited power density of fundamental radiation: Part 2 // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 594–600.
21. Ahmanov S.A., Suhorukov A.P., Hohlov R.V. K teorii generatsii opticheskih garmonik v skhodyashchihsya puchkah // ZhETF. 1966. N 2. P. 474–486.
22. Karamzin Yu.N. O raznostnyh skhemah dlya raschetov trekhchastotnyh vzaimodejstvij elektromagnitnyh voln v nelinejnoj srede s kvadratichnoj polyarizatsiej // ZHVM i MF. 1974. N 4. P. 1058–1062.
23. Fleck J.A., Morris J.R., Feit M.D. Time-dependent propagation of high energy laser beams through the atmosphere // Appl. Phys. A. 1976. V. 10, N 2. P. 129–160.
24. Konyaev P.A., Lukin V.P. Teplovye iskazheniya fokusirovannyh lazernyh puchkov v atmosfere // Izv. vuzov. Fiz. 1983. N 2. P. 79–89.
25. Blejkhut R. Bystrye algoritmy tsifrovoj obrabotki signalov. M.: Mir, 1989. 448 p.
26. Kolosov V.V., Troitskii V.O. Priblizhennaya metodika resheniya zadachi o generatsii vtoroj garmoniki v nelinejnyh kristallah. Part 1 // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 1001–1011; Kolosov V.V., Troitskii V.O. Approximate technique for solution of the problem of second harmonic generation in nonlinear crystals: Part 1 // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 302–311.
27. Kolosov V.V., Troitskii V.O. Paraksial'noe priblizhenie dlya zadachi rasprostraneniya puchkov v ploskosloistoj srede // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 754–759.
28. Born M., Vol'f E. Osnovy optiki. M.: Nauka, 1973. 719 p.
29. Kolosov V.V., Troitskii V.O. Priblizhennaya metodika resheniya zadachi o generatsii vtoroj garmoniki v nelinejnyh kristallah. Part 2 // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 1012–1019; Kolosov V.V., Troitskii V.O. Approximate technique for solving the problem of second harmonic generation in nonlinear crystals: Part 2 // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 312–319.
30. Kato K. Second Harmonic Generation to 2048 A in β–BaB2O4 // IEEE J. Quantum Electron. 1986. V. QE-22, N 7. P. 1013–1014.