Vol. 36, issue 06, article # 3

Lapteva N. A., Safatov A. S., Agafonov A. P. Simulation of the SARS-CoV-2 virus containing aerosol particles spread around a hospital. // Optika Atmosfery i Okeana. 2023. V. 36. No. 06. P. 443–447. DOI: 10.15372/AOO20230603 [in Russian].
Copy the reference to clipboard

Abstract:

The new coronavirus pneumonia has rapidly spread around the world. The World Health Organization emphasized that the SARS-CoV-2 coronavirus spreads mainly between people who are in close contact with each other, as well as in the case of touching contaminated surfaces followed by touching the eyes, nose, or mouth without first cleaning the hands. Possible permanent sources of the spread of the virus can be gathering of patients in hospitals in the case of non-compliance with the requirements for organizing the functioning of a hospital. Meteorological conditions can be a key factor influencing the spread of the virus in the case of an accidental release of virus-containing aerosol from such a hospital. Simulations are carried out with modern methods for solving a system of differential equations of the atmospheric boundary layer, which are adapted to describe the distribution of harmful atmospheric impurities over a real complex terrain considering urban buildings of various heights, forests, reservoirs, changing meteorological conditions, and many other factors.

Keywords:

SARS-CoV-2, viruses, propagation in the atmosphere, mathematical simulation

Figures:

References:

1. Morawska L., Milton D.K. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19) // Clin. Infect. Dis. 2020. V. 71. P. 2311–2313.
2. Frieden T., Lee C. Identifying and interrupting superspreading events–implications for control of severe acute respiratory syndrome coronavirus 2 // Emerg. Infect. Dis. 2020. V. 26. P. 1061–1066.
3. Miller S., Nazaroff W.W., Jimenez J.L., Boerstra A., Buonanno G., Dancer S.J., Kurnitski J., Marr L.C., Morawska L., Noakes C. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event // Indoor Air. 2021. V. 31, N 2. P. 314–323.
4. Heneghan C., Spencer E., Brassey J., Plüddemann A., Onakpoya I.J., Evans D.H., Conly J.M., Jefferson T. SARS-CoV-2 and the role of airborne transmission: A systematic review // F1000Research. 2021. V. 10:232. P. 1–72.
5. Pan M., Lednicky J.A., Wu C.Y. Collection, particle sizing and detection of airborne viruses // J. Appl. Microbiol. 2019. V. 127, N 6. P. 1596–1611.
6. Prather K.A., Wang C.C., Schooley R.T. Reducing transmission of SARS-CoV-2 // Science. 2020. V. 368, N 6498. P. 1422–1424.
7. Wang C.C., Prather K.A., Sznitman J., Jimenez J.L., Lakdawala S.S., Tufekci Z., Marr L.C. Airborne transmission of respiratory viruses // Science. 2021. V. 373, N 6558.
8. Lewis D. Superspreading drives the COVID pandemic – and could help to tame it // Nature. 2021. V. 590. P. 544–546.
9. Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., Lloyd-Smith J.O., Wit E., Munster V.J. Aerosol and surface stability of HCoV-19 (SARS-CoV-6 2) compared to SARS-CoV-1 // N. Engl. J. Med. 2020. V. 382. P. 1564–1567.
10. Leung N.H.L. Transmissibility and transmission of respiratory viruses // Nat. Rev. Microbiol. 2021. V. 19, N 8. P. 528–545.
11. Setti L., Passarini F., De Gennaro G., Barbieri P., Pallavicini A., Ruscio M., Piscitelli P., Colao A., Miani A. Searching for SARS-COV-2 on particulate matter: A possible early indicator of COVID-19 epidemic recurrence // Int. J. Environ. Res. Public Health. 2020. V. 17, N 9. P. 2986.
12. Dyani L. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning? // Nature. 2021. V. 590(7844). P. 26–28.
13. Greenhalgh T., Jimenez J.L., Prather K.A., Tufekci Z., Fisman D., Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2 // Lancet. 2021. V. 397. P. 1603–1605.
14. Lewis D. The challenges of making indoors safe // Nature. 2021. V. 592. P. 22–25.
15. Tang J.W., Bahnfleth W.P., Bluyssen P.M., Buonanno G., Jimenez J.L., Kurnitski J., Li Y., Miller S., Sekhar C., Morawska L., Marr L.C., Melikov A.K., Nazaroff W.W., Nielsen P.V., Tellier R., Wargocki P., Dancer S.J. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) // J. Hosp. Infect. 2021. V. 110. P. 89–96.
16. Gomes da Silva P., Gonçalves J., Nascimento M.S.J., Sousa S.I.V., Mesquita J.R. Detection of SARS-CoV-2 in the indoor and outdoor areas of urban public transport systems of three major cities of Portugal in 2021 // Int. J. Environ. Res. Public Health. 2022. V. 19, N 10. P. 5955.
17. Nishiura H., Oshitani H., Kobayashi T., Saito T., Sunagawa T., Matsui T., Wakita T., MHLW COVID-19 Response Team, Suzuki M. Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19) // The preprint server for Health Sciences: medRxiv. 2020. DOI: 10.1101/2020.02.28.20029272.
18. Tsang T.-W., Mui K.-W., Wong L.-T. Computational Fluid Dynamics (CFD) studies on airborne transmission in hospitals: A review on the research approaches and the challenges // J. Build. Eng. 2022. V. 63(A). P. 105533.
19. Lijun M., Guoqing Hu, Meng Y., Cui Z., Chunliang Z., Xinli Li. Research progress on the impact of environmental meteorological factors on the spread of novel coronavirus pneumonia // J. Occup. Environ. Med. 2022. V. 39, N 3. P. 348–352.
20. Dinoi A., Feltracco M., Chirizzi D., Trabucco S., Conte M., Gregoris E., Barbaro E., La Bella G., Ciccarese G., Belosi F., La Salandra G., Gambaro A., Contini D. A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmission // Sci. Total Environ. 2022. V. 809, 151137. P. 1–15.
21. Huang J., Jones P., Zhang A., Hou S.S., Hang J., Spengler J.D. Outdoor airborne transmission of coronavirus among apartments in high-density cities // Frontiers in Built Environ. 2021. V. 7:666923. P. 1–19.
22. Piazzola J., Bruch W., Desnues C., Parent P., Yohia C., Canepa E. Influence of meteorological conditions and aerosol properties on the COVID-19 contamination of the population in coastal and continental areas in France: Study of offshore and onshore winds // Atmosphere. 2021. V. 12, N 4. P. 523.
23. Golikov R.A., Surzhikov D.V., Kislitsyna V.V., Shtaiger V.A. Vliyanie zagryazneniya okruzhayushchei sredy na zdorov'e naseleniya (obzor literatury) // Nauchnoe obozrenie. Meditsinskie nauki. 2017. N 5. P. 20–31.
24. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Pt. 1. Mekhanika turbulentnosti. M.: Nauka, 1965. 639 p.
25. Borodulin A.I. Izmerenie tenzora koeffitsientov turbulentnoi diffuzii v atmosfere i ego nekotorye svoistva // Optika atmosf. i okeana. 1996. V. 9, N 6. P. 832–836.
26. Teverovskii E.N., Dmitriev E.S. Perenos aerozol'nykh chastits turbulentnymi potokami. M.: Energoatomizdat. 1988. 160 p.
27. Borodulin A.I., Desyatkov B.M. Modelirovanie rasprostraneniya primesei v pogranichnom sloe atmosfery. Novosibirsk: Novosib. gos. un-t, 2007. 376 p.
28. Shlychkov V.A., Borodulin A.I., Desyatkov B.M. Chislennoe modelirovanie tsirkulyatsii vozdukha i perenosa primesi v gorodskikh usloviyakh s yavnym uchetom landshafta // Optika atmosf. i okeana. 2006. V. 19, N 6. P. 552–556.
29. Borodulin A.I., Desyatkov B.M., Yarygin A.A. Model' rasprostraneniya atmosfernyh primesej v pogranichnom sloe atmosfery. Programma dlya EVM. 2006. Zaregistrirovana Federal'nym Institutom promyshlennoj sobstvennosti ROSPATENTa. Reg. nomer 2007610293. 16 january 2007 year.
30. Dabisch P., Schuit M., Herzog A., Beck K., Wood S., Krause M., Miller D., Weaver W., Freeburger D., Hooper I., Green B., Williams G., Holland B., Bohannon J., Wahl V., Yolitz J., Hevey M., Ratnesar-Shumate S. The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols // Aerosol Sci. Technol. 2020. V. 55, N 2. P. 142–153.
31. Fan X., Zhang X., Weerasuriya A.U., Hang J., Zeng L., Luo Q., Li C.Y., Chen Z. Numerical investigation of the effects of environmental conditions, droplet size, and social distancing on droplet transmission in a street canyon // Build. Environ. 2022. V. 221. Article 04059.
32. Peng S., Chen Q., Liu E. The role of computational fluid dynamics tools on investigation of pathogen transmission: Prevention and control // Sci. Total Environ. 2020. V. 746. P. 142862.
33. Oksanen L., Auvinen M., Kuula J., Malmgren R., Romantschuk M., Hyvärinen A., Laitinen S., Maunula L., Sanmark E., Geneid A., Sofieva S., Salokas J., Veskiväli H., Sironen T., Grönholm T., Hellsten A., Atanasova N. Combining Phi6 as a surrogate virus and computational large-eddy simulations to study airborne transmission of SARS-CoV-2 in a restaurant // Int. J. Indoor Environ. Health. 2022. V. 32, N 11. P. e13165.