Vol. 36, issue 04, article # 5

Rakitin V. S., Kirillova N. S., Fedorova E. I., Safronov A. N., Kazakov A. V., Dzhola A. V., Grechko E. I. Validation of TROPOMI orbital observations of the CO total column by ground-based measurements at the OIAP stations in Moscow and Zvenigorod. // Optika Atmosfery i Okeana. 2023. V. 36. No. 04. P. 289–298. DOI: 10.15372/AOO20230405 [in Russian].
Copy the reference to clipboard

Abstract:

Carbon monoxide (CO) total column (TC) measurements of the TROPOMI high-resolution orbital spectrometer have been validated by ground-based spectroscopic measurements at sites of the A.M. Obukhov Institute of Atmoshperic Physics, Russian Academy of Sciences, in Moscow and Zvenigorod for the period from June 28, 2018, to December 31, 2021. Correlation coefficients (R) between TROPOMI orbital data and ground-based stationary data are determined and analyzed. The high values of the correlation coefficient are obtained (R ~ 0.81–0.97) depending on the observation point, spatial averaging, and filtration applied. For different averaging of satellite data, the dependences of correlation parameters on the orbital angles, underlying surface albedo, and the height of atmospheric boundary layer are investigated. No influence of albedo on the correlation parameters of orbital and ground-based measurements is found for both observation sites. No significant dependence of correlation parameters on the viewing zenith angle is detected either. However, the correlation coefficients depend on the viewing azimuthal angles and the height of the atmospheric boundary layer. An increase in the correlation is obtained during observations at viewing azimuthal angles of less than 40° (up to R ~ 0.97), as well as under an increase in the height of the atmospheric boundary layer (up to R ~ 0.90).
 

Keywords:

carbon monoxide, total column, atmospheric spectroscopy, remote sensing, TROPOMI

References:

1. IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. 2391 p. URL: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport.pdf.
2. Novelli P.C., Masarie K.A., Lang P.M. Distributions and recent changes in carbon monoxide in the lower troposphere // J. Geophys. Res.: Atmos. 1998. V. 103, N 19. P. 015–033.
3. Jacob D.J. Introduction to Atmospheric Chemistry. Princeton, New Jersey: Princeton University Press, 1999. 267 p. DOI: 10.1515/9781400841547.
4. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow. Washington, DC: The National Academies Press, 2016. 226 p. DOI: 10.17226/23573.
5. Gurjar B.R., Butler T.M., Lawrence M.G., Lelie­veld J. Evaluation of emissions and air quality in megacities // Atmos. Environ. 2008. V. 42. P. 1593–1606. URL: http://www.sciencedirect.com/science/article/ /pii/S1352231007009697.
6. Wunch D., Wennberg P.O., Toon G.C., Keppel-Aleks G., Yavin Y.G. Emissions of greenhouse gases from a North American megacity // Geophys. Res. Lett. 2009. V. 36. DOI: 10.1029/2009GL039825.
7. Johnson M.S., Strawbridge K., Knowland K.E., Keller Ch., Travis M. Long-range transport of Siberian biomass burning emissions to North America during FIREX-AQ // Atmos. Environ. 2021. V. 252, N 118241. DOI: 10.1016/j.atmosenv.2021.118241.
8. Hu Q., Goloub Ph., Veselovskii I., Bravo-Aranda J.-A., Popovici I.E., Podvin Th., Haeffelin M., Lopatin A., Dubovik O., Pietras Ch., Huang X., Torres B., Chen Ch. Long-range-transported Canadian smoke plumes in the lower stratosphere over Northern France // Atmos. Chem. Phys. 2019. V. 19. P. 1173–1193. DOI: 10.5194/acp-19-1173-2019.
9. Jiang Z., Worden J.R., Worden H., Deeter M.A., Jones D.B., Arellano A.F., Henze D.K. A fifteen year record of CO emissions constrained by MOPITT CO observations // Atmos. Chem. Phys. 2017. V. 17. P. 4565–4583. DOI: 10.5194/acp-17-4565-2017.
10. Rakitin V.S., Elansky N.F., Wang P., Wang G., Pankratova N.V., Shtabkin Y.A., Skorokhod A.I., Safronov A.N., Makarova M.V., Grechko E.I. Changes in trends of atmospheric composition over urban and background regions of eurasia: Estimates based on spectroscopic observations // Geography. Environ. Sustain. 2018. V. 11. P. 84–96. DOI: 10.24057/2071-9388-2018-11-2-84-96.
11. Deeter M.N., Emmons L.K., Franci G., Edwaard D.-P., Gille J.-C., Warner J., Khattatov B., Zinskin D.-C., Lamarque J.-F., Ho S.-P., Yundin V., Attié Jean-Luc, Packman D., Chen Jie, Mao D.-D., Drummond J. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument // J. Geophys. Res. 2003. V. 108. N D14. DOI: 10.1029/2002JD003186.
12. Yurganov L.N., McMillan W.W., Dzhola A.V., Grechko E.I., Jones N.B., van der Werf G.R. Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle // J. Geophys. Res.: Atmos. 2008. V. 113, N 90. P. D09301. DOI: 10.1029/2007JD009229.
13. Yurganov L.N., Rakitin V., Dzhola A., August T., Fokeeva E., George M., Gorchakov G., Grechko E., Hannon S., Karpov A., Ott L., Semutnikova E., Shumsky R., Strow L. Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data // Atmos. Chem. Phys. 2011. V. 11. P. 7925−7942.
14. Pommier M., Mc Linden C.A., Deeter M. Relative changes in CO emissions over megacities based on observations from space // Geophys. Res. Lett. 2013. V. 40. P. 1–6. DOI: 10.1002/grl.50704.
15. Sitnov S.A., Mokhov I.I., Dzhola A.V. Obshchee soderzhanie oksida ugleroda v atmosfere nad rossijskimi regionami po sputnikovym dannym // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53. P. 38–55. DOI: 10.7868/S0002351517010126.
16. Rakitin V.S., Shtabkin Yu.A., Elanskij N.F., Pankratova N.V., Skorokhod A.I., Grechko E.I., Safronov A.N. Rezul'taty sopostavleniya sputnikovykh izmerenij obshchego soderzhaniya CO, CH4 i CO2 s nazemnymi spektroskopicheskimi dannymi // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 816–824; Rakitin V.S., Shtabkin Yu.A., Elansky N.F., Pankratova N.V., Skorokhod A.I., Grechko E.I., Safronov A.N. Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 533–542.
17. Wang P., Elansky N.F., Timofeev Y.M., Wang G., Golitsyn G.S., Makarova M.V., Rakitin V.S., Shtabkin Y., Skorokhod A.I., Grechko E.I., Fokeeva E.V., Safronov A.N., Liang R., Ting W. Long-term trends of carbon monoxide total columnar amount in urban areas and background regions: Ground- and satellite-based spectroscopic measurements // Adv. Atmos. Sci. 2018. V. 35. P. 785–795. DOI: 10.1007/s00376-017-6327-8.
18. Krol M., Peters W., Hooghiemstra P., George M., Clerbaux C., Hurtmans D., McInerney D., Sedano F., Bergamaschi P., El Hajj M., Kaiser W., Fisher D., Yershov V., Muller J.-P. How much CO was emitted by the 2010 fires around Moscow? // Atmos. Chem. Phys. 2013. V. 13. P. 4737–4747.
19. Yurganov L., Rakitin V. Two decades of satellite observations of carbon monoxide confirm the increase in Northern hemispheric wildfires // Atmosphere. 2022. V. 13. P. 1479. DOI: 10.3390/atmos13091479.
20. Li F., Zhang X., Kondragunta S., Lu X. An evaluation of advanced baseline imager fire radiative power based wildfire emissions using carbon monoxide observed by the Tropospheric Monitoring Instrument across the conterminous United States // Environ. Res. Lett. 2020. V. 15. P. 094049. DOI: 10.1088/1748-9326/ab9d3a.
21. Lorente A., Boersma K.F., Eskes H.J., Veefkind J.P., van Geffen J.H.G.M., de Zeeuw M.B., Denier van der Gon H.A.C., Beirle S., Krol M.C. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI // Sci. Rep. 2019. V. 9. P. 20033. DOI: 10.1038/s41598-019-56428-5.
22. Jin X., Zhu Q., Cohen R.C. Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI // Atmos. Chem. Phys. 2021. V. 21. P. 15569–15587. DOI: 10.5194/acp-21-15569-2021.
23. Ialongo I., Stepanova N., Hakkarainen J., Virta H., Gritsenko D. Satellite-based estimates of nitrogen oxide and methane emissions from gas flaring and oil production activities in Sakha Republic, Russia // Atmos. Environ. X. 2021. V. 11. P. 100114. DOI: 10.1016/j.aeaoa.2021.100114.
24. Crosman E. Meteorological drivers of permian basin methane anomalies derived from TROPOMI // Remote Sens. 2021. V. 13. 22 p. DOI: 10.3390/rs13050896.
25. Rakitin V.S., Elanskij N.F., Skorokhod A.I., Dzhola A.V., Rakitina A.V., Shilkin A.V., Kirillova N.S., Kazakov A.V. Dolgovremennye tendentsii obshchego soderzhaniya okisi ugleroda v atmosfere Moskovskogo megapolisa // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 1. P. 126–136. DOI: 10.31857/S0002351521010107.
26. McKernan E., Yurganov L.N., Tolton B.T., Drummond R. MOPITT validation using ground-based IR spectroscopy // Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, edited by A.M. Larar // Proc. SPIE. 1999. N 3756. P. 486–491.
27. Yurganov L.N., Grechko E.I., Dzhola A.V. Long-term measurements of carbon monoxide over Russia using a spectrometer of medium resolution // Recent Res. Devel. Geophys. 2002. N 4. P. 249–265.
28. Elanskij N.F., Shilkin A.V., Ponomarev N.A., Zakharova P.V., Kachko M.D., Polyakov T.I. Prostranstvenno-vremennye variatsii soderzhaniya zagryaznyayushchikh primesej v vozdushnom bassejne Moskvy i ikh emissii // Izv. RAN. Fiz. atmosf. i okeana. 2022. V. 58, N 1. P. 92–108. DOI: 10.31857/S0002351522010023.
29. Landgraf J., Borsdorff T., Langerock B., Keppens A. MPC Product Readme Carbon Monoxide V. 01.04.00, N 1.5, Document No. S5P-MPC-SRON-PRF-CO. URL: https://sentinel.esa.int/ documents / 247904 / 3541451 / Sentinel-5P-Carbon-Monoxide-Level-2-Product- Readme-File (last access: 02.12.2022).
30. Knapp M., Kleinschek R., Hase F., Agustí-Panareda A., Inness A., Barré J., Landgraf J., Borsdorff T., Kinne S., Butz A. Shipborne measurements of XCO2, XCH4, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI // Earth Syst. Sci. Data. 2021. V. 13. P. 199–211. DOI: 10.5194/essd-13-199-2021.
31. Yang Y., Zhou M., Langerock B., Sha M.K., Hermans C., Wang T., Ji D., Vigouroux C., Kumps N., Wang G., De Mazière M., Wang P. New ground-based Fourier-transform near-infrared solar absorption measurements of XCO2, XCH4, and XCO at Xianghe, China // Earth System Sci. Data. 2020. V. 12, N 3. P. 1679–1696. DOI: 10.5194/essd-12-1679-2020.
32. Sha M.K., Langerock B.L. Blavier J.-F., Blumenstock T., Borsdorff T., Buschmann M., Dehn A., De Mazière M., Deutscher N.M., Feist D.G., García O.E., Griffith D.W.T., Grutter M., Hannigan J.W., Hase F., Heikkinen P., Hermans C., Iraci L.T., Jeseck P., Jones N., Kivi R., Kumps N., Landgraf J., Lorente A., Mahieu E., Makarova M.V., Mellqvist J., Metzger J.-M., Morino I., Nagahama T., Notholt J., Ohyama H., Ortega I., Palm M., Petri C., Pollard D.F., Rettinger M., Robinson J., Roche S., Roehl C.M., Röhling A.N., Rousogenous C., Schneider M., Shiomi K., Smale D., Stremme W., Strong K., Sussmann R., Té Y., Uchino O., Velazco V.A., Vigouroux C., Vrekoussis M., Wang P., Warneke T., Wizenberg T., Wunch D., Yamanouchi S., Yang Y., Zhou M. Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations // Atmos. Meas. Tech. V. 14. P. 6249–6304. DOI: 10.5194/amt-14-6249-2021, 2021.
33. Apituley A., Pedergnana M., Sneep M., Veefkind J.P., Loyola D., Landgraf J., Borsdorff T. Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Carbon Monoxide – S5P L2 PUM Carbon Monoxide. N 1.0.0. URL: http://www. tropomi.eu/sites/default/ files / files / Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide_v1.0002_20180613.pdf (last access: 13.06.2018).
34. Skorokhod A.I., Rakitin V.S., Kirillova N.S. Vliyanie mer po sderzhivaniyu pandemii COVID-19 i meteorologicheskikh uslovij na sostav atmosfernogo vozdukha v Moskve v 2020 year // Meteorol. i gidrol. 2022. N 3. P. 36–46.