Vol. 36, issue 03, article # 9

Mershavka A. D., Repina I. A., Makarov R. D., Denisov E. A., Ivakhov V. M., Lykov A. D. Applicability of semiconductor methane sensors to measurements of the methane emission from water body surface. // Optika Atmosfery i Okeana. 2023. V. 36. No. 03. P. 224–238. DOI: 10.15372/AOO20230309 [in Russian].
Copy the reference to clipboard


The applicability of semiconductor methane sensors, designed to detect explosive concentrations of gas in rooms, to the study of background concentrations of methane in the atmosphere and its emissions from the water body surface is studied. An experimental prototype of the methane sensor is designed, for which, in order to increase the accuracy of determining the methane content in air, a calibration plan is suggested, which takes into account the humidity, temperature, and pressure of the environment. Laboratory and field experiments show that the TGS series sensors are capable of detecting methane concentration changes from 0.1 ppm and higher and can be mounted in floating chambers used to determine methane emissions from the water surface. An experimental setup is described. The results of calibration and selection of the best parametric model are presented. Recommendations for further development of the device are given.


methane, methane emission, water surface, semiconductor sensor, chamber method


  1. Feldman D.R., Collins W.D., Biraud S.C., Risser M.D., Turner D.D., Gero P.J., Torn M.S. Observationally derived rise in methane surface forcing mediated by water vapour trends // Nat. Geosci. 2018. V. 11, N 4. P. 238–243.
  2. Stanley E.H., Casson N.J., Christel S.T., Crawford J.T., Loken L.C., Oliver S.K. The ecology of methane in streams and rivers: Patterns, controls, and global significance // Ecol. Monogr. 2016. V. 86, N 2. P. 146–171.
  3. Bastviken D., Tranvik L.J., Downing J.A., Crill P.M., Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink // Science. 2011. V. 331, N 6013. P. 50.
  4. Walter K.M. Zimov S.A., Chanton J.P., Verbyla D., Chapin F.S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming // Nature. 2006. V. 443, N 7107. P. 71–75.
  5. Deemer B., Harrison A., Li S., Beaulieu J., Delsontro T. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis // Bioscience. 2016. V. 66, N 11. P. 949–964.
  6. Kim H.-S., Maksyutov S., Glagolev M., Machida T., Patra P., Sudo K., Inouel G. Evaluation of methane emissions from West Siberian wetlands based on inverse modeling // Environ. Res. Lett. 2011. V. 6. 6 p.
  7. Polishchuk V.Yu., Polishchuk Yu.M. Modelirovanie zapasov metana v termokarstovyh ozerah na osnove geoimitatsionnogo podhoda i sputnikovyh snimkov // Informatsionnye tehnologii i sistemy. 2020. P. 16–21.
  8. Stepanenko V.M., Grechushnikova M.G., Repina I.A. Chislennoe modelirovanie emissii metana iz vodohranilishcha // Fundament. i prikl. klimatol. 2020. V. 2. P. 76–99.
  9. Lorke A., Bodmer P., Noss C., Alshboul Z., Koschorreck M., Somlai-Haase C., Bastviken D., Flury S., McGinnis D.F., Maeck A., Müller D., Premke K. Technical note: Drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters // Biogeosci. 2015. V. 12. P. 7013–7024.
  10. Bastviken D., Nygren J., Schenk J., Massana R.P., Duc N.T. Technical note: Facilitating the use of low-cost methane (CH4) sensors in flux chambers – calibration, data processing, and an open-source make-it-yourself logger // Biogeoscie. 2020. V. 17. P. 659–667.
  11. Aubinet M., Vesala T., Papale D. Eddy covariance: A practical guide to measurement and data analysis. London, New York: Springer Science & Business Media, 2012. 83 р.
  12. Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. Lincoln, USA: LI-COR Biosciences, 2013. 331 p.
  13. Foken T. Micrometeorology. Heidelberg: Springer, 2017. 362 p.
  14. Rantakari M., Heiskanen J.J., Mammarella I., Tulonen T., Linnaluoma J., Kankaala P., Ojala A. Different apparent gas exchange coefficients for CO2 and CH4: Comparing a brown-water and a clear-water lake in the boreal zone during the whole growing season // Environ. Sci. Technol. 2015. V. 49, N 19. P. 11388–11394.
  15. Erkkilä K.-M., Ojala A., Bastviken D., Biermann T., Heiskanen J.J., Lindroth A., Peltola O., Rantakari M., Vesala T., Mammarella I. Methane and carbon dioxide fluxes over a lake: Comparison between eddy covariance, floating chambers and boundary layer method // Biogeosci. 2018. V. 15. P. 429–445.
  16. Eugster W., Kling G.W. Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies // Atmos. Meas. Tech. 2012. V. 5, N 8. P. 1925–1934.
  17. Riddick S.N., Mauzerall D.L., Celia M., Allen G., Pitt J., Kang M., Riddick J.T. The calibration and deployment of a low-cost methane sensor // Atmos. Environ. 2020. V. 230. P. 117440.
  18. World Meteorological Organization Guide to Meteorological Instruments and Methods of Observation. 2017. Geneva, Switzerland, World Meteorological Organization, N 8. 1177 p.
  19. Grechushnikova M.G., Badyukov D.D., Savvichev A.C., Kazantsev B.C. Sezonnye i prostranstvennye izmeneniya soderzhaniya metana v Mozhaiskom vodohranilishche v letnii period // Meteorol. i gidrol. 2017. N 11. P. 67–78.
  20. Grechushnikova M.G., Repina I.A., Stepanenko V.M., Kazantsev B.C., Artamonov A.Yu., Lomov B.A. Emissiya metana s poverhnosti dolinnogo Mozhaiskogo vodohranilishcha // Geogr. i prir. resursy. 2019. N 3. P. 77–85.
  21. Waldo S., Deemer B.R., Bair L.S., Beaulieu J.J. Greenhouse gas emissions from an arid-zone reservoir and their environmental policy significance: Results from existing global models and an exploratory dataset // Environ. Sci. Policy. 2021. V. 120. P. 53–62.