Vol. 36, issue 03, article # 10

Trigub M. V., Gembukh P. I., Vasnev N. A., Shiyanov D. V. Laser monitor for simultaneous imaging in the VIS and near-IR spectral ranges. // Optika Atmosfery i Okeana. 2023. V. 36. No. 03. P. 239–243. DOI: 10.15372/AOO20230310 [in Russian].
Copy the reference to clipboard

Abstract:

The paper presents the results of the development of an active optical system (a laser monitor) to form enhanced images simultaneously in the visible and near-IR spectral regions. Imagining is carried out in the active medium of a manganese atom brightness amplifier. Images are formed for a time corresponding to the amplification (generation) pulse, which is about 25 ns for the visible region and 35 ns for the IR. Image recording is carried out using digital cameras, including those based on a Russian-made InGaAs sensor. Images of processes accompanied by background radiation formed by a single pulse of a brightness amplifier based on manganese chloride vapors are shown for the first time.

Keywords:

active optical systems, brightness amplifiers, near-IR range, imaging

Figures:

References:

  1. Jung W., Kim H., Voronov A., Park S., Ryu J., Jeong S.H., Roh C.L. High-precision laser glass cutting for future display // J. Soc. Inform. Disp. 2022. V. 30, N 5. P. 462–470. DOI: 10.1002/jsid.1130.
  2. Liu H., Guo Z., Yuan X., Gao Q., Duan X., Zhang X. Femtosecond laser processing and field emission properties of the FEAs on single crystal GdB6 (100) surface // Vacuum. 2022. V. 199. P. 110948. DOI: 10.1016/ j.vacuum.2022.110948.
  3. Liu H., Lin W., Hong M. Hybrid laser precision engineering of transparent hard materials: Challenges, solutions and applications // Light: Sci. Appl. 2021. V. 10, N 1. P. 162. DOI: 10.1038/s41377-021-00596-5.
  4. Dogan G., Chiu F., Chen S.U.H., David M.R.T., Michalowski A., Schänzel M., Silber C., Schütz G., Grévent C., Keskinbora K. Micromachining of Al2O3 thin films via laser drilling and plasma etching for interfacing copper // Mater. Des. 2021. V. 210. P. 110114. DOI: 10.1016/j.matdes.2021.110114.
  5. Wang B., Zhou L., Guo Y., Guo H., Zhong Y., Huang X., Ge Y., Wang Q., Chu X., Jin Y., Lan K., Yang M., Qu J. Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair // Bioact. Mater. 2022. V. 12. P. 314–326. DOI: 10.1016/j.bioactmat.2021.10.032.
  6. Kwaśny M., Bombalska A. Applications of laser-induced fluorescence in medicine // Sensors. 2022. V. 22, N 8. P. 2956. DOI: 10.3390/s22082956.
  7. Zeng W., Cai F. Ming, Wang F., Miao L., You F., Yao F. Finite element simulation of laser-generated ultrasonic waves for quantitative detection of internal defects in welds // Optik. 2020. V. 221. P. 165361. DOI: 10.1016/j.ijleo.2020.165361.
  8. Moralev I., Kazanskii P., Bityurin V., Bocharov A., Firsov A., Dolgov E., Leonov S. Gas dynamics of the pulsed electric arc in the transversal magnetic field // J. Phys. D: Appl. Phys. 2020. V. 53, N 42. DOI: 10.1088/1361-6463/ab9d5a.
  9. Wang W.C., Zhou B., Xu S.H., Yang Z.M., Zhang Q.Y. Recent advances in soft optical glass fiber and fiber lasers // Prog. Mater. Sci. 2019. V. 101. P. 90–171. DOI: 10.1016/j.pmatsci.2018.11.003.
  10. Dianov E.M. Volokonnye lazery // Foton-Ekspress. 2016. V. 129, N 1. P. 22–25.
  11. Bowers M.S., Canalias C., Mirov S., Nilsson J., Saraceno C.J., Schunemann P.G. Feature issue introduction: Advanced solid-state lasers // Opt. Mater. Express. 2022. V. 12, N 6. P. 20762–20766. DOI: 10.1364/ome.464524.
  12. Brauch U., Röcker C., Graf T., Abdou Ahmed M. High-power, high-brightness solid-state laser architectures and their characteristics // Appl. Phys. B: Laser. Opt. 2022. V. 128, N 3. P. 1–32. DOI: 10.1007/s00340-021-07736-0.
  13. Batenin V.M., Glina V.Yu., Klimovskii I.I., Seleznev L.A. Primenenie opticheskikh sistem s usilitelyami yarkosti dlya issledovaniya poverkhnostei elektrodov iz grafita i pirografita vo vremya goreniya dugi // Teplofizika vysokikh temperatur. 1991. V. 29, N 6. P. 1204–1210.
  14. Buzhinskij O.I., Vasiliev N.N., Moshkunov A.I., Slivitskaya I.A., Slivitsky A.A. Copper vapor laser application for surface monitoring of divertor and first wall in ITER // Fusion Eng. Des. 2002. V. 60, N 2. P. 141–155. DOI: 10.1016/S0920-3796(01)00610-X.
  15. Saraev Y.N., Trigub M.V., Vasnev N.A., Semenchuk V.M., Nepomnyashiy A.S. The imaging of the welding processes with the use of CuBr-laser // Proc. SPIE. 2019. V. 11322. DOI: 10.1117/12.2554872.
  16. Ponomarev I.V., Shakina L.D., Topchii S.B., Klyuchareva S.V., Pushkareva A.E. Lechenie piogennoi granulemy izlucheniem lazera na parakh medi // Vestn. dermatologii i venerologii. 2021. V. 97, N 2. P. 41–49. DOI: 10.25208/vdv1209.
  17. Grigor'yants A.G., Kazaryan M.A., Lyabin N.A., Shiganov I.N. Vozmozhnosti pretsizionnoi mikroobrabotki metarialov izlucheniem lazera na parakh medi // Naukoemkie tekhnologii v mashinostroenii. 2017. V. 68, N 2. P. 36–48.
  18. Bokhan P.A., Buchanov V.V., Zakrevskii D.E., Kazaryan M.A., Prokhorov A.M., Fateev N.V. Opticheskoe i lazerno-khimicheskoe razdelenie izotopov v atomarnykh parakh. M.: Fizmatlit, 2017. 228 p.
  19. Evtushenko G.S., Torgaev S.N., Trigub M.V., Shiyanov D.V., Evtushenko T.G., Kulagin A.E. High-speed CuBr brightness amplifier beam profile // Opt. Commun. 2017. V. 383. P. 148–152. DOI: 10.1016/ j.optcom.2016.09.001.
  20. Vuchkov N., Temelkov K. New High-Power Metal Halide Vapour Lasers: Gas-Discharge Plasma Physics and Lasers’ Applications. Australia, Adelaide: University of Adelaide, 2015. 194 p.
  21. Foster P.G. Industrial applications of copper bromide laser technology: Ph.D. Thesis, 2005. 308 p.
  22. Little C.E. Metal Vapor Lasers: Physics, Engineering & Application. Chichester (UK): John Willey&Sons, 1998. 620 p.
  23. Evtushenko G.S. Methods and Instruments for Visual and Optical Diagnostics of Objects and Fast Processes. New York: Nova Science Publishers Inc., 2018. 184 р.
  24. Trigub M.V., Fedorov K.V., Evtushenko G.S. Vizualizatsiya ob"ektov, raspolozhennykh na udalenii do 5 m ot CuBr-usilitelya yarkosti, s impul'som izlucheniya tipichnoi dlitel'nosti // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 850–853. DOI: 10.15372/AOO20150911.
  25. Abramov D.V., Galkin A.F., Zharenova S.V., Klimovskii I.I., Prokoshev V.G., Shamanskaya E.L. Vizualizatsiya s pomoshch'yu lazernogo monitora vzaimodeistviya lazernogo izlucheniya s poverkhnost'yu steklo- i pirougleroda // Izv. TPU. 2008. V. 312, N 2. P. 97–100.
  26. Zemskov K.I., Kazaryan M.A., Matveev V.M., Petrash G.G., Samsonova M.P., Skripnichenko A.S. Lazernaya obrabotka ob"ektov s odnovremennym vizual'nym kontrolem v sisteme «generator – usilitel'» na parakh medi // Kvant. elektron. 1984. V. 11, N 2. P. 418–420.
  27. Saraev Y.N., Trigub M.V., Vasnev N.A. Copper bromide vapor laser for imaging of drip–transfer processes in electric arc welding // The 14th Intern. Conf. on pulsed lasers and laser applications – «AMPL-2019»: Abstracts. Tomsk: STT Publishing House, 2019. P. 104–105.
  28. Saraev Yu.N., Lunev A.G., Trigub M.V., Perovskaya M.V. Metodika issledovanii kharakteristik teplomassoperenosa pri dugovoi svarke plavyashchimsya elektrodom s video registratsiei izobrazhenii v usloviyakh lazernogo kogerentnogo izlucheniya // Aktual'nye problemy v mashinostroenii. 2018. V. 5, N 1–2. P. 20–25.
  29. Osipov V.V., Evtushenko G.S., Platonov V.V., Thikhonov E.V., Kremenetskii M.V., Vasnev N.A., Gembukh P.I., Trigub M.V. High-speed video recording of liquid melt spraying during ablation of the Y2O3 target using a fiber ytterbium laser // 2022 Intern. Conf. Laser Optics (ICLO). St. Petersburg, 2022. P. 1.
  30. Trigub M.V., Platonov V.V., Evtushenko G.S., Osipov V.V., Evtushenko T.G. Laser monitors for high speed imaging of materials modification and production // Vacuum. 2017. V. 143. P. 486–490. DOI: 10.1016/j.vacuum.2017.03.016.
  31. Trigub M.V., Vasnev N.A., Kitler V.D., Evtushenko G.S. Primenenie bistaticheskogo lazernogo monitora dlya vysokoskorostnoi vizualizatsii protsessov goreniya // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 962–966; Trigub M.V., Vasnev N.A., Kitler V.D., Evtushenko G.S. The use of a bistatic laser monitor for high-speed imaging of combustion processes // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 154–159.
  32. Li L., Ilyin A.P., Gubarev F.A., Mostovshchikov A.V., Klenovskii M.S. Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor // Ceram. Int. 2018. V. 44, N 16. P. 19800–19808. DOI: 10.1016/j.ceramint.2018.07.237.
  33. Li L., Mostovshchikov A.V., Ilyin A.P., Smirnov A., Gubarev F.A. Optical system with brightness amplification for monitoring the combustion of aluminum-based nanopowders // IEEE Transac. Instrum. Meas. 2020. V. 69, N 2. P. 457–468.
  34. Bushuev E.V., Yurov V.Y., Bolshakov A.P., Ralchenko V.G., Khomich A.A., Antonova I.A., Ashkinazi E.E., Shershulin V.A., Pashinin V.P., Konov V.I. Express in situ measurement of epitaxial CVD diamond film growth kinetics // Diam. Relat. Mater. 2017. V. 72. P. 61–70. DOI: 10.1016/j.diamond.2016.12.021.
  35. Rybka D.V., Andronikov I.V., Evtushenko G.S., Kozyrev A.V., Kozhevnikov V.Yu., Kostyrya I.D., Tarasenko V.F., Trigub M.V., Shut’ko Yu.V. Koronnyi razryad v vozdukhe atmosfernogo davleniya pri modulirovannom impul'se napryazheniya dlitel'nost'yu 10 ms // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 85–90; Rybka D.V., Andronikov I.V., Evtushenko G.S., Kozyrev A.V., Kozhevnikov V.Yu., Kostyrya I.D., Tarasenko V.F., Trigub M.V., Shut’ko Yu.V. Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 449–454.
  36. Trigub M.V., Shiyanov D.V., Sukhanov V.B., Petukhov T.D., Evtushenko G.S. Usilitel' yarkosti na perekhodakh atoma margantsa s chastotoi sledovaniya impul'sov do 100 kGz // Pis'ma v zhurn. tekhn. fiz. 2018. V. 44, N 24. P. 135. DOI: 10.21883/PJTF.2018.24.47041.17523.
  37. Trigub M.V., Shiyanov D.V., Sukhanov V.B., Evtushenko G.S. Aktivnaya sreda na parakh bromida margantsa s vnutrennim reaktorom pri chastote sledovaniya impul'sov do 100 kGz // Optika atmosf. i okeana. 2014. V. 27, N 4. P. 321–325; Trigub M.V., Shiyanov D.V., Sukhanov V.B., Evtushenko G.S. MnBr vapor active medium with a built-in reactor at 100-kHz pulse repetition frequency // Atmos. Ocean. Opt. 2014. V. 27, N 4. P. 458–462.
  38. Shiyanov D.V., Trigub M.V., Sokovikov V.G., Evtushenko G.S. MnCl2 laser with pulse repetition frequency up to 125 kHz // Opt. Laser Technol. 2020. V. 129. DOI: 10.1016/j.optlastec.2020.106302.
  39. Vasnev N.A., Gembukh P.I., Trigub M.V. Aktivnaya sreda na parakh khlorida margantsa dlya vizualizatsii v vidimom i blizhnem IK-diapazonakh spektra // Tr. XXX Mezhdunar. nauchn. konf. «Lazerno-informatsionnye tekhnologii LIT-2022». Novosibirsk, 2022. P. 82–84.
  40. Trigub M.V., Ogorodnikov D.N., Dimaki V.A. Issledovanie istochnika nakachki lazera na parakh metallov s impul'snym zaryadom rabochei emkosti // Optika atmosf. i okeana. 2014. V. 27, N 12. P. 1112–1115.