Vol. 36, issue 01, article # 5

Rakitin V. S., Gruzdev A. N., Kirillova N. S., Fedorova E. I., Elokhov A. S., Safronov A. N. Validation of results of measurements of the NO2 contents in the troposphere and stratosphere with the TROPOMI satellite instrument on the basis of ground-based measurements at the Zvenigorod scientific station of A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. // Optika Atmosfery i Okeana. 2023. V. 36. No. 01. P. 32–41. DOI: 10.15372/AOO20230105 [in Russian].
Copy the reference to clipboard


Results of measurements of the NO2 contents in the vertical columns of the troposphere and stratosphere with the TROPOMI (Tropospheric Monitoring Instrument) aboard the Copernicus Sentinel-5P satellite in 2018–2020 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (ZSS) of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The comparison of the satellite data with the ZSS data is carried out for the two products of satellite measurements: the NO2 contents in the tropospheric and stratospheric columns. The correspondence between the results of satellite and ground-based measurements is characterized by the difference between them, linear correlation coefficients, and regression coefficients. The dependences of the comparison characteristics on the season, cloud conditions, and the height of the atmospheric boundary layer are revealed.


NO2, spectrometric measurements, TROPOMI, validation



  1. Brasseur G.P., Solomon S. Aeronomy of the middle atmosphere. Dordrecht: Springer, 2005. 644 p.
  2. Atmospheric chemistry and global change / G.P. Brasseur, J.J. Orlando, G.S. Tyndall (eds.). Oxford: Oxford University. Press, 1999. 654 p.
  3. Hu Y., Liu C., Chen R., Kan H., Zhou M., Zhao B. Associations between total mortality and personal exposure to outdoor-originated NO2 in 271 Chinese cities // Atmos. Environ. 2021. V. 246. 118170.
  4. Seinfeld J.H., Pandis S.N. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken, New Jersey, USA: John Wiley & Sons, 2006. 1225 p.
  5. Levelt P.F., Joiner J., Tamminen J., Veefkind J.P., Bhartia P.K., Stein Zweer D.C., Duncan B.N., Streets D.G., Eskes H., Van Der A.R., McLinden C., Fioletov V., Carn S., De Laat J., DeLand M., Marchenko S., McPeters R., Ziemke J., Fu D., Liu X., Pickering K., Apituley A., Abad G.G., Arola A., Boersma F., Miller C.C., Chance K., De Graaf M., Hakkarainen J., Hassinen S., Ialongo I., Kleipool Q., Krotkov N., Li C., Lamsal L., Newman P., Nowlan C., Suleiman R., Tilstra L.G., Torres O., Wang H., Wargan K. The ozone monitoring instrument: Overview of 14 years in space // Atmos. Chem. Phys. 2018. V. 18. P. 5600–5745.
  6. Eskes H., van Geffen J., Boersma F., Eichmann K.-U., Apituley A., Pedergnana M., Sneep M., Veefkind J.P., Loyola D. Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide – S5P L2 PUM Nitrogen dioxide issue 4.0.0, 2020-12-01 – released. URL: https://sentinel.esa.int/docments/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide (last access: 1.08.2022).
  7. Zhao X., Griffin D., Fioletov V., McLinden C., Cede A., Tiefengraber M., Müller M., Bognar K., Strong K., Boersma F., Eskes H., Davies J., Ogyu A., Lee S.C. Assessment of the quality of TROPOMI high-spatial-resolution NO2 data products in the Greater Toronto Area // Atmos. Meas. Tech. 2020. V. 13. P. 2131–2159. DOI: 10.5194/amt-13-2131-2020.
  8. Dimitropoulou E., Hendrick F., Pinardi G., Friedrich M.M., Merlaud A., Tack F., De Longueville H., Fayt C., Hermans C., Laffineur Q., Fierens F., Van Roozendael M. Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels // Atmos. Meas. Techn. 2020. V. 13. P. 5165–5191. DOI: 10.5194/amt-13-5165-2020.
  9. Judd L.M., Al-Saadi J.A., Szykman J.J., Valin L.C., Janz S.J., Kowalewski M.G., Eskes H.J., Veefkind J.P., Cede A., Mueller M., Gebetsberger M., Swap R., Pierce R.B., Nowlan C.R., Abad G.G., Nehrir A., Williams D. Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound // Atmos. Meas. Tech. 2020. V. 13. P. 6113–6140. DOI: 10.5194/amt-13-6113-2020.
  10. Wang C., Wang T., Wang P., Rakitin V. Comparison and validation of TROPOMI and OMI NO2 observations over China // Atmosphere. 2020. V. 11. P. 636. DOI: 10.3390/atmos11060636.
  11. Tack F., Merlaud A., Iordache M.-D., Pinardi G., Dimitropoulou E., Eskes H., Bomans B., Veefkind P., Van Roozendael M. Assessment of the TROPOMI tropospheric NO2 product based on airborne APEX observations // Atmos. Meas. Tech. 2021. V. 14. P. 615–646. DOI: 10.5194/amt-14-615-2021.
  12. Verhoelst T., Compernolle S., Pinardi G., Lambert J.-C., Eskes H.J., Eichmann K.-U., Fjæraa A.M., Granville J., Niemeijer S., Cede A., Tiefengraber M., Hendrick F., Pazmiño A., Bais A., Bazureau A., Boersma K.F., Bognar K., Dehn A., Donner S., Elokhov A., Gebetsberger M., Goutail F., de la Mora M.G., Gruzdev A., Gratsea M., Hansen G.H., Irie H., Jepsen N., Kanaya Y., Karagkiozidis D., Kivi R., Kreher K., Levelt P.F., Liu C., Müller M., Comas M.N., Piters A.J.M., Pommereau J.-P., Portafaix T., Puentedura O., Querel R., Remmers J., Richter A., Rimmer J., Cárdenas C.R., de Miguel L.S., Sinyakov V.P., Strong K., Van Roozendael M., Veefkind .P., Wagner T., Wittrock F., González M.Y., Zehner C. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks // Atmos. Meas. Tech. 2021. V. 14. P. 481–510. DOI: 10.5194/amt-14-481-2021.
  13. Lorente A., Boersma K.F., Eskes H.J., Veefkind J.P., van Geffen J.H.G.M., de Zeeuw M.B., Denier van der Gon H.A.C., Beirle S., Krol M.C. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI // Sci Rep. 2019. V. 9. 20033. DOI: 10.1038/s41598-019-56428-5.
  14. Huber D.E., Steiner A.L., Kort E.A. Daily cropland soil NOx emissions identified by TROPOMI and SMAP // Geophys. Res. Lett. 2020. V. 47. DOI: 10.1029/2020GL089949.
  15. Griffin D., McLinden C.A., Dammers E., et al. Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: Methodology and validation // Atmos. Meas. Tech. 2021. V. 14. P. 7929–7957. DOI: 10.5194/amt-14-7929-2021.
  16. Jin X., Zhu Q., Cohen R.C. Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI // Atmos. Chem. Phys. 2021. V. 21. P. 15569–15587. DOI: 10.5194/acp-21-15569-2021.
  17. Saw D.K., Dey S., Kaushal H., Lal K. Tracking NO2 emission from thermal power plants in North India using TROPOMI data // Atmos. Environ. 2021. V. 259. 118514. DOI: 10.1016/j.atmosenv.2021.118514.
  18. Marais E.A., Roberts J.F., Ryan R.G., Eskes H., Boersma K.F., Choi S., Joiner J., Abuhassan N., Redondas A., Grutter M., Cede A., Gomez L., Navarro-Comas M. New observations of NO2 in the upper troposphere from TROPOMI // Atmos. Meas. Tech. 2021. V. 14. P. 2389–2408. DOI: 10.5194/amt-14-2389-2021.
  19. Gruzdev A.N., Elokhov A.S. Validation of Ozone Monitoring Instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia // Int. J. Remote Sens. 2010. V. 31, N 2. P. 497–511. DOI: 10.1080/01431160902893527.
  20. Gruzdev A.N., Elokhov A.S. Comparison of the results of ground-based and satellite (OMI) measurements of the NO2 contents in the stratosphere and troposphere over Zvenigorod: Sensitivity to cloud cover and tropospheric pollution // Proc. SPIE. 2021. V. 11916. DOI: 10.1117/12.2601814.
  21. Gruzdev A.N., Elohov A.S. Sopostavlenie rezul'tatov mnogoletnih izmerenij soderzhaniya NO2 v stratosfere i troposfere s pomoshch'yu sputnikovogo pribora OMI s rezul'tatami nazemnyh izmerenij // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59. (in print).
  22. Elohov A.S., Gruzdev A.N. Izmereniya obshchego soderzhaniya i vertikal'nogo raspredeleniya NO2 na Zvenigorodskoj nauchnoj stantsii // Izv. RAN. Fiz. atmosf. i okeana. 2000. V. 36, N 6. P. 831–846.
  23. Gruzdev A.N., Elokhov A.S. Variability of stratospheric and tropospheric nitrogen dioxide observed by visible spectrophotometer at Zvenigorod, Russia // Int. J. Remote Sens. 2011. V. 32, N 11. P. 3115–3127. DOI: 10.1080/01431161.2010.541524.
  24. Hendrick F., Barret B., Van Roozendael M., Boesch H., Butz A., De Mazière M., Goutail F., Hermans C., Lambert J.-C., Pfeilsticker K., Pommereau J.-P. Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons // Atmos. Chem. Phys. 2004. V. 4, N 8. P. 2091–2106.
  25. Vandaele A.C., Hermans C., Simon M., et al. Measurements of the NO2 absorption cross section from 42.000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 and 294 K // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 59, N 3–5. P. 171–184.
  26. Gruzdev A.N., Elokhov A.S. Validatsiya rezul'tatov izmerenij soderzhaniya NO2 v vertikal'nom stolbe atmosfery s pomoshch'yu pribora OMI s borta sputnika EOS-Aura po dannym nazemnyh izmerenij na Zvenigorodskoj nauchnoj stantsii // Izv. RAN. Fiz. atmosf. i okeana. 2009. V. 45, N 4. P. 477–488.
  27. Rakitin V.S., Elanskij N.F., Skorohod A.I., Dzhola A.V., Rakitina A.V., Shilkin A.V., Kirillova N.S., Kazakov A.V. Dolgovremennye tendentsii obshchego coderzhaniya okisi ugleroda v atmosfere Moskovskogo megapolisa // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 1. P. 126–136.
  28. Skorohod A.I., Rakitin V.S., Kirillova N.S. Vliyanie mer po sderzhivaniyu pandemii COVID-19 i meteorologicheskih uslovij na sostav atmosfernogo vozduha v Moskve v 2020 year // Meteorol. i gidrol. 2022. N 3. P. 36–46.