Vol. 36, issue 01, article # 1

Vasilenko I. A., Naumenko O. V., Horneman V.-M.. Expert list of absorption lines of the 32S16O2 molecule in the 0–4200 cm-1 spectral region. // Optika Atmosfery i Okeana. 2023. V. 36. No. 01. P. 5–11. DOI: 10.15372/AOO20230101 [in Russian].
Copy the reference to clipboard

Abstract:

A highly accurate and detailed expert list of absorption lines of the 32SO2 molecule in the range 0–4200 cm-1 has been created. The line centers in the expert list are determined from the experimental and calculated by the effective Hamiltonian energy levels, and the intensities are mainly variational data. The list contains 549200 vibrational-rotational transitions for 22 bands. The obtained centers and line intensities are compared in detail with the HITRAN2016 database and the AMES empirical list. Comparison with experimental data also shows that the accuracy of the variational calculation of the intensities of the spectral lines of the 32SO2 molecule depends on the vibrational quantum numbers.

Keywords:

SO2, vibration-rotation spectra, empirical linelists, the effective Hamiltonian, variational calculations

References:

  1. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
  2. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Cane E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.1079493.
  3. Delahaye T., Armante R., Scott N.A., Jacquinet-Husson N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.-M., Gamache R.R., Jacquemart D., Jolly A., Kwabia Tchana F., Kyuberis A., Li G., Lyulin O.M., Manceron L., Mikhailenko S., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev Vl.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510.
  4. Conway E.K., Gordon I.E., Kyuberis A.A., Polyansky O.L., Tennyson J., Zobov N.F. Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN2016 database // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106711. DOI: 10.1016/j.jqsrt.2019.106711.
  5. Tennyson J., Bernath P.F., Brown L.R., Campargue A., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Naumenko O.V., Polyansky O.L., Rothman L.S., Vandaele A.C., Zobov N.F. A database of water transitions from experiment and theory (IUPAC Technical Report) // Pure Appl. Chem. 2014. V. 86. P. 71–83.
  6. Vasilenko I.A., Naumenko O.V. Ekspertnyj spisok linij pogloshcheniya molekuly 32S16O2 v diapazone 2000–3000 cm-1 // Optika atmosf. i okeana. 2020. V. 33, N 5. P. 342–346; Vasilenko I.A., Naumenko O.V., Horneman V.-M. Expert list of absorption lines of the SO2 molecule in the 2000–3000 cm-1 spectral region // Atmos. Ocean. Opt. 2020. V. 33, N 5. P. 443–448. DOI: 10.1134/S1024856020050188.
  7. Tóbiás R., Furtenbacher T., Császár A.G., Naumenko O.V., Piorier B. Critical evaluation of measured rotational vibrational transitions of four sulphur isotopologues of S16O2 // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 208. P. 152–163.
  8. Vasilenko I., Naumenko O., Horneman V.-M. High-resolution FTIR spectrum of SO2 molecule between 2400 and 2650 cm-1 // 25th Intern. Conf. High Resolution Molecular Spectroscopy. Bilbao, Spain. 3–7 September, 2018. P. 286. URL: http://www.hrms-bilbao2018.com/ daily-program.html (last access: 25.02.2020).
  9. Naumenko O.V., Vasilenko I.A., Horneman V.-M. High Resolution FTIR Spectrum of SO2 molecule in the region of the 2n1 + n3 // 26th Colloquium on High-Resolution Molecular Spectroscopy. Dijon, France. 26–30 August, 2019. P. 74. URL: http://vesta.u-bourgogne.fr/hrms/ Program/AbsBook-HRMS-26-HRefs.pdf (last access: 25.02.2020).
  10. Underwood D., Tennyson J., Yurchenko S., Huang X., Schwenke D., Lee T., Clausen S., Fateev A. ExoMol molecular line lists – XIV. The rotation–vibration spectrum of hot SO2 // Mon. Not. Royal Astron. Soc. 2016. V. 459. P. 3890–3899.
  11. Ulenikov O.N., Bekhtereva E.S., Horneman V.-M., Alanko S., Gromova O.V. High resolution study of the 3n1 band of SO2 // J. Mol. Spectrosc. 2009. V. 255. P. 111–121.
  12. Lafferty W.J., Pine A.S., Hilpert G., Sams R.L., Flaud J.-M. The n1 + n3 and 2n1 + n3 band systems of SO2: Line positions and intensities // J. Mol. Spectrosc. 1996. V. 176. P. 280–286.
  13. Perrin A., Flaud J.-M., Goldman A., Camy-Peyret C., Lafferty W.J., Arcas Ph., Rinsland C.P. NO2 and SO2 line parameters: 1996 HITRAN update and new results // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 60. P. 839–850. DOI: 10.1016/S0022-4073(98)00086-7.
  14. Chu M., Wetzel S.J., Lafferty W.J., Perrin A., Flaud J.-M., Arcas P., Guelachvili G. Line Intensities for the 8-mm Bands of SO2 // J. Mol. Spectrosc. 1998. V. 189. P. 55–63. DOI: 10.1006/jmsp.1997.7517.
  15. Lafferty W.J., Pine A.S., Flaud J.-M., Camy-Peyret C. The 2n3 band of 32S16O2: Line positions and intensities // J. Mol. Spectrosc. 1993. V. 157. P. 499–511. DOI: 10.1006/jmsp.1993.1039.
  16. Lafferty W.J., Fraser G.T., Pine A.S., Flaud J.-M., Camy-Peyret C., Dana V., Mandin J.-Y., Barbe A., Plateaux J.J., Bouazza S. The 3n3 band of 32S16O2: Line positions and intensities // J. Mol. Spectrosc. 1992. V. 154. P. 51–60. DOI: 10.1016/0022-2852(92)90028-M.
  17. Sumpf B. Line intensity and self-broadening investigations in the n1 and n3 bands of SO2 // J. Mol. Struct. 2001. V. 599. P. 39–49. DOI: 10.1016/S0022-2860(01)00836-5.
  18. Henningsen J., Hald J. Quantitative analysis of dilute mixtures of SO2 in N2 at 7.4 mm // J. Appl. Phys. B. 2003. V. 76. P. 441–449. DOI: 10.1007/s00340-003-1140-8.
  19. Joly L., Zeninari V., Parvitte B., Weidmann D., Courtois D., Bonetti Y., Aellen T., Beck M., Faist J., Hofstetter D. Spectroscopic study of the n1 band of SO2 using a continuous wave DFB QCL at 9.1 mm // Appl. Phys. B: Lasers. Opt. 2003. V. 77. P. 703–706. DOI: 10.1007/s00340-003-1310-8.
  20. Zéninari V., Joly L., Grouiez B., Parvitte B., Barbe A. Study of SO2 line parameters with a quantum cascade laser spectrometer around 1090 cm-1: Comparison with calculations of the n1 and n1 + n2 - n2 bands of 32SO2 and the n1 band of 34SO2 // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105. P. 312–325. DOI: 10.1016/j.jqsrt.2006.11.006.
  21. Henningsen J., Barbe A., De Backer-Barilly M.-R. Revised molecular parameters for 32SO2 and 34SO2 from high resolution study of the infrared spectrum in the 7–8 mm wavelength region // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109 P. 2491–2510. DOI: 10.1016/j.jqsrt.2008.04.001.
  22. Tasinato N., Charmet .P., Stoppa P., Giorgianni S, Buffa G. Spectroscopic measurements of SO2 line parameters in the 9.2 mm atmospheric region and theoretical determination of self-broadening coefficients // J. Chem. Phys. 2010. V. 132. P. 044315. DOI: 10.1063/1.3299274.
  23. Tasinato N., Charmet A.P., Stoppa P., Buffa G., Puzzarini C. A complete listing of sulfur dioxide self-broadening coefficients for atmospheric applications by coupling infrared and microwave spectroscopy to semiclassical calculations // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130 P. 233–248. DOI: 10.1016/j.jqsrt.2013.03.015.
  24. Grouiez B., Parvitte B., Joly L., Courtois D., Zeninari V. Comparison of a quantum cascade laser used in both cw and pulsed modes. Application to the study of SO2 lines around 9 mm // Appl. Phys. B. 2008. V. 90. P. 177–186. DOI: 10.1007/s00340-007-2857-6.
  25. Tasinato N., Pietropolli Charmet A., Stoppa P., Buffa G., Puzzarini P. A complete listing of sulfur dioxide self-broadening coefficients for atmospheric applications by coupling infrared and microwave spectroscopy to semiclassical calculations // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 233–248. DOI: 10.1016/j.jqsrt.2013.03.015.
  26. Ceselin G., Tasinato N., Puzzarini C., Charmet A.P., Stoppa P., Giorgianni S. Collision induced broadening of ν1 band and ground state spectral lines of sulfur dioxide perturbed by N2 and O2 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 198. P. 155–163. DOI: 10.1016/j.jqsrt.2017.05.013.
  27. Sumpf B. Line intensity and self-broadening investigations in the 19 mm n2 band of SO2 // Spectrochim Acta A. 1999. V. 55. P. 1931–1939.
  28. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Quack M., Mellau G.Ch., Sydow C., Bauerecker S. Extended analysis of the high resolution FTIR spectrum of 32S16O2 in the region of the ν2 band: Line positions, strengths, and pressure broadening widths // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 210. P. 141–155. DOI: 10.1016/j.jqsrt.2018.02.010.
  29. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Horneman V.-M., Sydow C., Bauerecker S. High resolution FTIR spectroscopy of sulfur dioxide in the 1550–1950 cm-1 region: First analysis of the bands of 32S16O18O and experimental line intensities of ro-vibrational transitions in the bands of 32S16O2, 34S16O2, 32S18O2, and 32S16O18O // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203 P. 377–391. DOI: 10.1016/j.jqsrt.2017.02.005.
  30. Borkov Y.G., Lyulin O.M., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Perevalov V.I. CO2-broadening and shift coefficients of sulfur dioxide near 4 mm // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 225. P. 119–124.
  31. Huang X., Schwenke D.W., Lee T.J. Quantitative Validation of Ames IR Intensity and New Line Lists for 32/33/34SO2, 32S18O2 and 16O32S18O // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 225. P. 327–336.