Vol. 35, issue 12, article # 3

Pol'kin Vas. V., Pol'kin V. V., Panchenko M. V. Long-term observations of the aureole scattering phase function in the surface air layer of the suburbs of Tomsk (2010–2021). // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 987–992. DOI: 10.15372/AOO20221203 [in Russian].
Copy the reference to clipboard


The long-term measurements of the aureole scattering phase function are analyzed for angles j = 1.2° and 20° (I1.2 and I20), which were obtained using a closed-type halo photometer at the aerosol station of the LAO of the IAO SB RAS in 2010–2021. The analysis of the temporal variability of the parameters was carried out for interannual and annual data and the diurnal behavior of hourly measurements. The daily averages were calculated from the hourly averages, the monthly averages, from daily averages and the annual averages, from the monthly averages. A weak but significant (p = 0.05 level) time trend was found only for the interannual values of I1.2, which amounted to 1.14% per year. In the annual course of I1.2, a monotonous increase in the values from winter to summer months is clearly observed. In the annual course of I20, we see a decrease in values from winter to summer. Smokes from distant wildfires in 2012 and 2016 and partially in 2018 and 2019 disrupt this pattern with increased I20 values in July and insignificantly in June, August, and September. The diurnal behavior of the aureole scattering phase function values I1.2 and I20 and the ratios I20 /I1.2 constructed for the annual variation of monthly average daily values are typical of the behavior of surface aerosol under continental conditions. Smokes from remote wildfires lead to high values of I20 at night, morning, and evening, and the decrease in I20 during the daytime is insignificant with a probability of 0.95 due to the high standard deviation.


small-angel scattering phase function, submicron and coarse atmospheric aerosol, temporal variability


  1. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S.K., Sherwood S., Stevens B., Zhang X.Y. Clouds and Aerosols // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge University Press, 2014. P. 571–657.
  2. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge: Cambridge University Press, 2013. 1535 p. DOI: 10.1017/CBO9781107415324.
  3. Kondrat'ev K.Ya. Global'nyj klimat. SPb.: Nauka, 1992. 356 p.
  4. Kondratyev K.Ya. Climatic Effects of Aerosols and Clouds. Chichester: Springer, 1999. 264 p.
  5. Kondrat'ev K.Ya. Aerozol' i klimat: sovremennoe sostoyanie i perspektivy razrabotok. 3. Aerozol'noe radiatsionnoe vozmushchayushchee vozdejstvie // Optika atmosf. i okeana. 2006. V. 19, N 7. P. 565–575.
  6. Kondrat'ev K.Ya. Ot nano- do global'nyh masshtabov: svojstva, protsessy obrazovaniya i posledstviya vozdejstvij atmosfernogo aerozolya. 7. Aerozol'noe radiatsionnoe vozmushchenie i klimat // Optika atmosf. i okeana. 2005. V. 18, N 7. P. 535–556.
  7. Derimia Y., Dubovi O., Huang X., Lapyonok T., Litvinov P., Kostinski A.B., Dubuisson P., Ducos F. Comprehensive tool for calculation of radiative fluxes: Illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics // Atmos. Chem. Phys. 2016. V. 16. P. 5763–5780. DOI: 10.5194/acp-16-5763-2016.
  8. Bouvet M., Thom K., Berthelot B., Bialek A., Czapla-Myers J., Fox N.P., Goryl P., Henry P., Ma L., Marc S., Meygre A., Wenny B.N., Woolliams E.R. RadCalNet: A Radiometric Calibration Network for Earth observing imagers operating in the visible to shortwave infrared Spectral Range // Remote Sens. 2019. V. 11, N 20. P. 2401. DOI: 10.3390/rs11202401.
  9. Doxani G., Vermote E., Roger J.-C., Gascon F., Adriaensen S., Frantz D., Hagolle O., Hollstein A., Kirches G., Li F., Louis J., Mangin A., Pahlevan N., Pflug B., Vanhellemont Q. Atmospheric Correction Inter-Comparison Exercise // Remote Sens. 2018. V. 10, N 2. P. 352. DOI: 10.3390/rs10020352.
  10. Li L., Dubovik O., Derimian Y., Schuster G.L., Lapyonok T., Litvinov P., Ducos F., Fuertes D., Chen C., Li Z., Lopatin A., Torres B., Che H. Retrieval of aerosol components directly from satellite and ground-based measurements // Atmos. Chem. Phys. 2019. V. 19, N 21. P. 13409–13443. DOI: 10.5194/acp-19-13409-2019.
  11. Satellite aerosol remote sensing over land / A.A. Kokhanovsky, G. de Leeuw (eds.). Chichester: Springer, Praxis, 2009. 398 p. DOI: 10.1007/978-3-540-69397-0.
  12. Von Hoyningen-Huene W., Yoon J., Vountas M., Istomina L.G., Rohen G., Dinter T., Kokhanovsky A.A., Burrows J.P. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS // Atmos. Meas. Tech. 2011. V. 4, N 2. P. 151–171.
  13. Belov V.V., Tarasenkov M.V., Engel M.V., Gridnev Yu.V., Zimovaya A.V., Poznakharev E.S., Abramochkin V.N., Fedosov A.V., Kudryavtsev A.N. Atmosfernaya korrektsiya sputnikovyh izobrazhenij zemnoj poverhnosti v opticheskom diapazone dlin voln. Opticheskaya svyaz' na rasseyannom izluchenii // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 753–757; Belov V.V., Tarasenkov M.V., Engel M.V., Gridnev Yu.V., Zimovaya A.V., Abramochkin V.N., Poznakharev E.S., Fedosov A.V., Kudryavtsev A.N. Atmospheric correction of satellite images of the Earth’s surface in the optical wavelength range. Optical communication based on scattered radiation // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 80–84.
  14. Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel M.V. Vosstanovlenie koeffitsientov otrazheniya zemnoj poverhnosti po sputnikovym izmereniyam MODIS s uchetom polyarizatsii izlucheniya // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 641–649; Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel M.V. Retrieval of reflection coefficients of the earth’s surface from modis satellite measurements considering radiation polarization // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 179–187.
  15. Lurton T., Renard J.-B., Vignelles D., Jeannot M., Akiki R., Mineau J.-L., Tonnelier T. Light scattering at small angles by atmospheric irregular particles: Modelling and laboratory measurements // Atmos. Meas. Tech. 2014. V. 7. P. 931–939. DOI: 10.5194/amt-7-931-2014.
  16. WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023. Geneva: WMO, 2017. N 228. 84 p.
  17. Rozenberg G.V. Rasseyanie sveta v zemnoj atmosfere // Uspekhi fiz. nauk. 1960. V. 71, issue 2. P. 173–213.
  18. Yunge H. Himicheskij sostav i radiaktivnost' atmosfery. M.: Mir, 1965. 424 p.
  19. Rozenberg G.V., Sandomirskij A.B. Opticheskaya stratifikatsiya atmosfernogo aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1971. V. 7, N 7. P. 737–749.
  20. Bullrich K. Scattering radiation in the atmosphere and the natural aerosol // Adv. Geophys. 1964. V. 10. P. 99–260.
  21. Zuev V.E. Prozrachnost' atmosfery dlya vidimyh i infrakrasnyh luchej. M.: Sov. radio, 1966. 317 p.
  22. Rozenberg G.V. Opticheskie issledovaniya atmosfernogo aerozolya // Uspekhi fiz. nauk. 1968. V. 95, issue 1. P. 159–208.
  23. Rozenberg G.V. Svojstva atmosfernogo aerozolya po dannym opticheskogo issledovaniya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1967. V. 3, N 9. P. 936–949.
  24. Atmosfernyj aerozol' i ego vliyanie na perenos izlucheniya / pod red. K.Ya. Kondrat'eva. L.: Gidrometeoizdat, 1978. 119 p.
  25. Будыко М.И., Голицын Г.С., Израэль Ю.А. Глобальные климатические катастрофы. M.: Gidrometeoizdat, 1986. 160 p.
  26. Rozenberg G.V. Vozniknovenie i razvitie atmosfernogo aerozolya – kineticheski obuslovlennye parametry // Izv. AN SSSR. Fiz. atmosf. i okeana. 1983. V. 19, N 1. P. 21–35.
  27. Boucher O., Bellassen V., Benveniste H., Ciais P., Criqui P., Guivarch C., Le Treut H., Mathy S., Seferian R. In the wake of Paris Agreement, scientists must embrace new directions for climate change research // PNAS. 2016. V. 113, N 27. P. 7287–7290. DOI: 10.1073/pnas.1607739113. https://www.pnas.org/content/pnas/113/27/7287.full.pdf.
  28. Tashenov B.T. Okolosolnechnyj oreol i atmosfernyj aerozol' / Rasseyanie i pogloshchenie sveta v atmosfere. Alma-Ata: Nauka Kazahskoj SSSR, 1971. P. 29–37.
  29. Gorchakov G.I., Isakov A.A. Oreol'nye indikatrisy dymki // Izv. AN SSSR. Fiz. atmosf. i okeana. 1974. V. 10, N 5. P. 504–511.
  30. Belyaev S.P., Nikiforova N.K., Smirnov V.V., Shchelchkov G.I. Optiko-elektronnye metody izucheniya aerozolej. M.: Energoizdat, 1981. 232 p.
  31. Pritchard B.S., Eliott W.G. Two instruments for atmospheric optics measurements // J. Opt. Soc. Atmos. 1960. V. 50, N 3. P. 191–199.
  32. Gorchakov G.I., Isakov A.A., Sviridenkov M.A. Statisticheskie svyazi mezhdu koeffitsientom rasseyaniya i koeffitsientom napravlennogo svetorasseyaniya v oblasti uglov 0,5–165° // Izv. AN SSSR. Fiz. atmosf. i okeana. 1976. V. 12, N 12. P. 1261–1267.
  33. Lyubovtseva Yu.S., Rozenberg G.V. Oreol'naya chast' indikatrisy rasseyaniya v prizemnom vozduhe // Izv. AN SSSR. Fiz. atmosf. i okeana. 1966. V. 2, N 3. P. 248–262.
  34. Pol’kin V.V., Pol’kin Vas.V. Inter-annual and seasonal variability of the diurnal behavior of aureole scattering phase function at the aerosol monitoring station of LOA IAO SB RAS in 2010–2014 // Proc. SPIE. 2015. V. 9680. DOI: 10.1117/12.2205780.
  35. Polkin Vas.V. Seasonal variation of the diurnal behavior of aureole scattering phase function at the aerosol monitoring station of LOA IAO SB RAS // Proc. SPIE. 2018. V. 10833. DOI: 10.1117/12.2503052.
  36. Polkin Vas.V., Panchenko M.V. Annual variation of the of aureole scattering phase function at the surface layer of the Tomsk suburb // Proc. SPIE. 2019. V. 11208 DOI: 10.1117/12.2540709.
  37. Sviridenkov M.A. Approksimatsiya van de Hyulsta i mikrostruktura pylevogo aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1993. V. 29, N 2. P. 218–221.
  38. Shmargunov V.P., Pol'kin Vik.V., Tumakov A.G., Panchenko M.V., Pol'kin Vas.V. Oreol'nyj fotometr zakrytogo ob"ema // Pribory i tekhnika eksperimenta. 2010. N 6. P. 155–157.
  39. Oreol'nyj fotometr zakrytogo tipa: Patent na poleznuyu model' N 142875. Russia, MPK, G01J 1/04. Pol'kin Vas.V., Pol'kin V.V., Shmargunov V.P., Tumakov A.G., Panchenko M.V.; FGBUN Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2013136713/28; Zayavl. 06.08.2013; Opubl. 10.07.2014. Byul. N 19.
  40. Panchenko M.V., Pol'kin V.V., Pol'kin Vas.V., Kozlov V.S., Yausheva E.P., Shmargunov V.P.. Raspredelenie po razmeram «suhoj osnovy» chastits v prizemnom sloe atmosfery prigorodnogo rajona g. Tomska v ramkah empiricheskoj klassifikatsii tipov «aerozol'noj pogody» // Optika atmosf. i okeana. 2019. V. 32, N 7. P. 539–547; Panchenko M.V., Pol'kin V.V., Pol'kin Vas.V., Kozlov V.S., Yausheva E.P., Shmargunov V.P. The size distribution of the “dry matter” of particles in the surface air layer in suburbs of Tomsk within the empirical classification of “aerosol weather” types // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 655–662. DOI: 10.1134/S1024856019060113.
  41. Kramer G. Matematicheskie metody statistiki. M.: Mir, 1975. 648 p.
  42. Kovalev A.F. Nekotorye harakteristiki poverhnosti zemli kak istochnika aerozolya // Tr. IEM. 1990. N 51. P. 83–87.
  43. Kozlov V.S., Panchenko M.V., Yausheva E.P. Субмикронный аэрозоль и сажа приземного слоя в суточном ходе // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 561–569; Kozlov V.S., Panchenko M.V., Yausheva E.P. Diurnal variations of the submicron aerosol and black carbon in the near-ground layer // Atmos. Ocean. Opt. 2011. V. 24, N 1. P. 30–38.