Vol. 35, issue 12, article # 2

Dyomin V. V., Davydova A. Yu., Polovtsev I. G., Yudin N. N., Zinoviev M. M. Accuracy of determination of longitudinal coordinates of particles by digital holography. // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 979–986. DOI: 10.15372/AOO20221202 [in Russian].
Copy the reference to clipboard


Based on known expressions applied to diffraction-limited optical systems, estimates are given and a method is proposed for determining the measurement error of the longitudinal coordinates of particles from images reconstructed from digital holograms. A correction factor for visual focusing is determined for different distances between a detected particle and the plane of a CMOS matrix. The experimental results of testing the method are presented. It is shown that the error of automatic digital focusing can be reduced by simultaneously applying focusing curves for several quality indicators and optimizing the image area for their construction.


digital particle holography, reconstructed particle images, longitudinal coordinates of particles, error, diffraction-limited systems


  1. Dyomin V.V., Gribenyukov A.I., Davydova A.S., Zinoviev M.M., Olshukov A.S., Podzyvalov S.N., Polovtsev I.G., Yudin N.N. Holography of particles for diagnostics tasks [Invited] // Appl. Opt. 2019. V. 58, N 34. P. G300–G309.
  2. Yu F.T.S. An Introduction to Diffraction, Information Processing, and Holography. Cambridge: MIT Press, 1973. 427 р.
  3. Кольер Р., Беркхарт К., Лин Л. Оптическая голография. М.: Мир, 1973. 521 р.
  4. Dyomin V.V., Gribenyukov A.I., Podzyvalov S.N., Yudin N.N., Zinoviev M.M., Polovtsev I.G., Davydova A.Yu., Olshukov A.S. Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2 // Appl. Sci. 2020. V. 10, N 2. P. 442-1–442-10.
  5. Yudin N.N., Pavlov P.V., Zinov’ev M.M., Podzyvalov S.N., Dyomin V.V., Polovtsev I.G., Kuskov I.E., Vol’f I.E., Evsin A.O., Balashov A.A., Kostin A.S. Assessment of fatigue damage of fluoroorganic aircraft glass using digital holography methods // J. Opt. Technol. 2020. V. 88, N 2. P. 72–76.
  6. Kemppinen O., Laning J.C., Mersmann R.D., Videen G., Berg M.J. Imaging atmospheric aerosol particles from a UAV with digital holography // Sci. Rep. 2020. V. 10. P. 16085.
  7. Demin V.V., Ol'shukov A.S., Naumova E.Yu., Mel'nik N.G. Tsifrovaya golografiya planktona // Optika atmosf. i okeana. 2008. V. 21, N 12. P. 1089–1095.
  8. Dyomin V., Davydova A., Polovtsev I., Olshukov A., Kirillov N., Davydov S. Underwater Holographic sensor for plankton studies in situ including accompanying measurements // Sensors. 2021. V. 21, N 4863. P. 1–19.
  9. Memmolo P., Miccio L., Merola F., Gennari O., Netti P.A., Ferraro P. 3D morphometry of red blood cells by digital holography // Cytometry A. 2014. V. 85, N 12. P. 1030–1036. DOI: 10.1002/cyto.a.22570.
  10. Nikolaeva T.Y., Petrov N.V. Characterization of particles suspended in a volume of optical medium at high concentrations by coherent image processing // Opt. Eng. 2015. V. 54, N 8. P. 083101.
  11. Vovk T.A., Petrov N.V. Correlation Characterization of Particles in Volume Based on Peak-to-Basement Ratio // Sci. Rep. 2017. V. 7. P. 43840.
  12. Scott D.M. Recent advances in in-process characterization of suspensions and slurries // Powder Technol. 2022. P. 117159.
  13. Chapin S.C., Germain V., Dufresne E.R. Automated trapping, assembly, and sorting with holographic optical tweezers // Opt. Express. 2006. V. 14. P. 13095–13100.
  14. Rodrigo P.J., Eriksen R.L., Daria V.R., Glückstad J. Interactive light-driven and parallel manipulation of inhomogeneous particles // Opt. Express. 2002. V. 10. P. 1550–1556.
  15. Bilsky A.V., Gobyzov O.A., Markovich D.M. Evolution and recent trends of particle image velocimetry for an aerodynamic experiment // Thermophys. Aeromech. 2020. V. 27, N 1. P. 1–22.
  16. Born M., Wolf E. Principles of Optics. Cambridge: MIT Press Cambridge: University Press, 1999. 31 p.
  17. Dyomin V.V., Kamenev D.V. Kriterii kachestva golograficheskih izobrazhenij chastits razlichnoj formy // Izv. vuzov. Fiz. 2010. V. 53, N 9. P. 46–53.
  18. ISO 2602:1980 “Statistical interpretation of test results – Estimation of the mean – Confidence interval”.
  19. Fisher R.A., Rothamsted M.A. Statistical methods for research workers Metron. 1925. V. 5. P. 90.
  20. Dyomin V.V., Kamenev D.V. Evaluation of Algorithms for Automatic Data Extraction from Digital Holographic Images of Particles // Russ. Phys. J. 2016. V. 58, N 10. P. 1467–1474.
  21. Huang W., Jing Z. Evaluation of focus measures in multifocus image fusion // Pattern Recognit. Lett. 2007. V. 28, N 4. P. 493–500.
  22. Gonzalez R.C., Woods R.E. Digital Image Processing. Prentice Hall. New Jersey: Prentice Hall, 2001.
  23. Santos A., Ortiz de Solorzano C., Vaquera J.J., Pena J.M., Malpica N., del Pozo F. Evaluation of autofocus functions in molecular cytogenetic analysis // J. Microsc. 1997. V. 188, N 3. P. 264–272.
  24. Dyomin V.V., Kamenev D.V. Two-dimensional representation of a digital holographic image of the volume of a medium with particles as a method of depicting and processing information concerning the particles // J. Opt. Technol. 2013. V. 80, N 7. P. 450–456.
  25. Osibote O.A. Automated focusing in bright-field microscopy for tuberculosis detection // J. Microsc. 2010. V. 240, N 2. P. 155–163.
  26. Vatamanyuk I.V., Ronzhin A.L. Primenenie metodov otsenivaniya razmytosti tsifrovyh izobrazhenij v zadache audiovizual'nogo monitoringa // Obrabotka informatsii i upravlenie. 2014. V. 4. P. 16–23.
  27. Davydova A.Y., Dyomin V., Polovtsev I. Evaluation of the effect of noise in a digital holographic system on the quality of reconstructed particle image // Proc. SPIE. 2020. V. 11560. P. 1156020-1–6.