Vol. 35, issue 12, article # 11

Kharyutkina E. V., Moraru E. I. Spatial and temporal variability of forest floor moisture characteristics and their influence on wildfires in Western Siberia over 2016–2021. // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 1036–1042. DOI: 10.15372/AOO20221211 [in Russian].
Copy the reference to clipboard

Abstract:

The spatial and temporal variability of forest floor moisture characteristics is analyzed on the basis of the Canadian Fire Forest Weather Indices (CFFWIS) for the territory of Western Siberia (45–75° N, 60–90° E) over 2016–2021 for the first time. The floor moisture effect on the number of wildfires (hotspots) during the warm season (March–October) is assessed. The results are given for different natural zones. Statistically significant correlations are found between hotspots and floor moisture at a depth of 7 cm only in some spring and summer months (correlation coefficient is up to 0.54). The strongest effect (correlation coefficient is up to 0.60) on wildfires is observed for floor moisture at a depth of 1.2 cm in the south of Western Siberia in April. Thus, it can be concluded that the forest floor moisture is an important parameter in description of conditions for fire initiation and development. However, the question about its effect on the wildfire behavior remains open and requires additional research accounting meteorological and atmospheric conditions. The results can be used in future for solving problems of forecasting the potential fire danger.

Keywords:

forest floor moisture, soil moisture, wildfire, Western Siberia, reanalysis data, satellite data

References:

  1. Sherstyukov B.G., Sherstyukov A.B. Otsenki tendentsij usilij lesnyh pozharov v Rossii do kontsa XXI v. Po dannym stsenarnyh eksperimentov klimaticheskih modelej pyatogo pokoleniya // Meteorol. i gidrol. 2014. N 5. P. 17–30.
  2. Forkel M., Dorigo W., Lasslop G., Chuvieco E., Hantson S., Heil A., Teubner I., Thonicke K., Harrison S.P. Recent global and regional trends in burned area and their compensating environmental controls // Environ. Res. Commun. 2019. P. 051005.
  3. Lomakina N.Ya., Lavrinenko A.V. Sovremennye tendentsii izmeneniya temperatury pogranichnogo sloya atmosfery Sibirskogo regiona // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 42–50. DOI: 10.15372/ AOO20220107.
  4. Haryutkina E.V., Loginov S.V., Moraru E.I., Pustovalov K.N., Martynova Yu.V. Dinamika harakteristik ekstremal'nosti klimata i tendentsii opasnyh meteorologicheskih yavlenij na territorii Zapadnoj Sibiri // Optika atmosf. i okeana. 2022. V. 2, N 32. P. 136–142.
  5. Malevskij-Malevich S.P. Analiz izmeneniya pozharoopasnoj obstanovki v lesah Rossii v XX i XXI vekah na osnove modelirovaniya klimaticheskih uslovij // Meteorol. i gidrol. 2007. N 3. P. 14–24.
  6. Mohov I.I., Chernokul'skij A.V. Regional'nye model'nye otsenki riska lesnyh pozharov v aziatskoj chasti Rossii pri izmeneniyah klimata // Geogr. i prir. resursy. 2010. N 2. P. 120–126.
  7. Shcheglova E.G. O vliyanii pogodnyh uslovij na pozhary prirodnyh ob"ektov // Vestn. OGU. 2013. N 1. P. 166–170.
  8. Gorchakov G.I., Sitnov S.A., Karpov A.V., Gorchakova I.A., Gushchin R.A., Datsenko O.I. Krupnomasshtabnye dymki Evrazii letom 2016 year // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 3. P. 41–51.
  9. Phalagov Yu.A., Uzhegov V.N., Panchenko M.V., Ippolitov I.I. Elektroopticheskie svyazi v atmosfere v usloviyah dymovogo smoga // Optika atmosf. i okeana. 2006. V. 19, N 10. P. 861–864.
  10. Kirsanov A.A. Modelirovanie rasprostraneniya zagryaznyayushchih veshchestv v atmosfere pri lesnyh pozharah: Avtoref. dis... kand. geogr. nauk. M.: FGBU Gidrometeorologicheskij nauchno-issledovatel'skij tsentr Rossijskoj Federatsii», 2015. 23 p.
  11. Shkol'nik I.M., Mol'kentin E.K., Nadezhina E.D., Hlebnikova E.I., Sall' I.A. Ekstremal'nost' termicheskogo rezhima v Sibiri i dinamika pozharoopasnoj obstanovki v XXI veke: otsenki s pomoshch'yu regional'noj klimaticheskoj modeli GGO // Meteorol. i gidrol. 2008. N 3. P. 5–15.
  12. Badmaev N., Bazarov A. Correlation analysis of terrestrial and satellite meteodata in the territory of the Republic of Buryatia (Eastern Siberia, Russian Federation) with forest fire statistics // Agricult. Forest Meteor. 2021. N 297. P. 108245.
  13. Forkel M., Thonicke K., Beer C., Cramer W., Bartalev W., Schmullius C. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia // Environ. Res. Lett. 2012. V. 7. P. 044021.
  14. Groisman P.Y., Sherstyukov B.G., Razuvaev V.N., Knight R.W., Enloe J.G., Stroumentova N.S., Whitfield P.H., Førland E.J., Hanssen-Bauer I., Tuomenvir­ta H., Aleksandersson H., Mescherskaya A.V., Karl T.R. Potential forest fire danger over Northern Eurasia: Changes during the 20th century // Glob. Planet. Change. 2007. V. 56, N 3–4. P. 371–386.
  15. Wotton B.M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications // Environ. Ecol. Stat. 2009. V. 16. P. 107–131.
  16. Rubtsov A.V., Suhinin A.I., Vaganov E.A. Sistemnyj analiz pogodnoj pozharnoj opasnosti pri prognozirovanii krupnyh pozharov v lesah Sibiri // Issled. Zemli iz kosmosa. 2010. N 3. P. 62–70.
  17. Kharyutkina E., Pustovalov K., Moraru E., Nechepu­renko O. Analysis of spatio-temporal variability of lightning activity and wildfires in Western Siberia during 2016–2021 // Atmosphere. 2022. V. 13, N 669. P. 1–16.
  18. Van Wagner C.E. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Ottawa, ON, Canada: National Capital Region, 1987. 37 p.
  19. Gubenko I.M., Rubinshtejn K.G. Sravnitel'nyj analiz metodov rascheta indeksov pozharnoj opasnosti // Trudy Gidromettsentra Rossii. 2012. Iss. 347.
  20. Dzhenkins G., Vatts D. Spektral'nyj analiz i ego prilozheniya. Iss. 1. M.: MPI, 1971. 320 p.
  21. Bartsch A., Balzter H., George C. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites // Environ. Res. Lett. 2009. N 4. DOI 10.1088/1748-9326/4/4/045021.
  22. Sherstyukov A.B. Temperatura pochvogruntov Rossii na glubinah do 320 sm v usloviyah izmenyayushchegosya klimata // Trudy VNIIGMI-MTSD. 2007. Iss. 173. P. 72–88.
  23. Haryutkina E.V., Loginov S.V. Tendentsii vremennyh izmenenij temperatury pochvy na glubinah v Zapadnoj Sibiri po dannym reanaliza // Geogr. i prir. resursy. 2019. N 2. P. 95–102.
  24. Dowdy A.J., Mills G.A. Atmospheric states associated with the ignition of lightning-attributed fires. Melbourne: Centre for Australian Weather and Climate Research, 2009. N. 19. 35 p.
  25. Jupp T.E., Taylor C.M., Balzter H., George C.T. A statistical model linking Siberian forest fire scars with early summer rainfall anomalies // Geophys. Res. Lett. 2006. V. 33, N L14701. DOI:10.1029/2006GL026679.
  26. Eliseev A.V., Mohov I.I., Chernokul'skij A.V. Vliyanie molnievoj aktivnosti i antropogennyh faktorov na krupnomasshtabnye harakteristiki prirodnyh pozharov // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 1. P. 3–14.
  27. Ruffault J., Curt T., Martin-StPaul N.K., Moron V., Trigo R.M. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean // Nat. Hazards Earth Syst. Sci. 2018. V. 18. P. 847–856.
  28. Peterson D., Wang J., Ichoku C., Remer L.A. Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: Implications for fire weather forecasting // Atmos. Chem. Phys. 2010. V. 10. P. 6873–6888.