Vol. 35, issue 11, article # 9

Ladohina E. M., Rubinshtein K. G., Kulyushina A. V. Sensitivity of the numerical weather forecast fields to the variations in St. Petersburg surface parameters. // Optika Atmosfery i Okeana. 2022. V. 35. No. 11. P. 932–943. DOI: 10.15372/AOO20221109 [in Russian].
Copy the reference to clipboard


The influence of physical parameters, which describe the St. Petersburg surface properties in the WRF-ARW model, on the forecast of surface meteorological elements is studied. The results are estimated for the cases June 14–22, 2015, when intense positive temperature anomaly occurred in St. Petersburg in comparison with the surroundings. The parameters were chosen from the analysis of similar studies for several cities of the world. Experiments with serial variations in the parameters selected showed that decrease in the surface albedo, soil moisture content, and surface emissivity and an increase in the roughness length improved the forecast quality for the city in comparison with a control experiment. In final experiment, the concurrent variations in the urban surface physical parameters, in accordance with the results of serial experiments, significantly improved the simulation of the city’s thermal anomaly in the model. In the time periods corresponding to the intense urban heat island occurrence, the difference in the surface temperatures between the control and final forecasts could attain 2 °C for the St. Petersburg model area. Under certain synoptic conditions, the variations in the urban surface parameters in the model affect the forecast of meteorological fields within a radius of 150 km from the center of the metropolis.


numerical weather prediction, WRF-ARW, St. Petersburg, physical parameters of underlying surface, urban heat island


  1. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 (medium-fertility variant). New York, 2022. URL: https://worldometers.info/world-population/ world-population-projections (last access: 10.01.2022).
  2. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2018. New York, 2022. URL: https:// population.un.org/wup/Maps (last access: 10.01.2022).
  3. Klimat Leningrada / C.A. Shver (red.). L.: Gidrometeoizdat, 1982. 252 p.
  4. Морозова С.В. Статистическое исследование волн тепла и холода в Северо-Западном регионе зимой и летом (на примере Санкт-Петербурга) // Уч. зап. Рос. гос. гидромет. ун-та. 2014. № 36. C. 50–53.
  5. Оке Т.Р. Климаты пограничного слоя. Л.: Гидрометеоиздат, 1982. 360 с.
  6. METROMEX: A Review and Summary / Changnon S. (ed.). Springer, 2016. 181 p.
  7. Landsberg G.E. Klimat goroda. L.: Gidrometeoizdat, 1983. 248 p.
  8. Gartland L.M. Heat Islands: Understanding and Mitigating Heat in Urban Areas. England: Routledge, 2012. 208 p.
  9. Deilami K., Kamruzzaman M., Liu Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures // Int. J. Appl. Earth Obs. 2018. N 67. P. 30–42.
  10. Kim S.W., Brown R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review // Sci. Total Environ. 2021. N 779. P. 146–389.
  11. Kusaka H., Chen F., Tewari M., Dudhia J., Gill D.O., Duda M.G., Wang W., Miya Y. Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model // J. Meteorol. Soc. Jpn. Ser. II. 2012. N. 90. P. 33–45.
  12. Giannaros T.M., Melas D., Daglis I.A., Keramitsoglou I., Kourtidis K. Numerical study of the urban heat island over Athens (Greece) with the WRF model // Atmos. Environ. 2013. N 73. P. 103–111.
  13. Dudhia J. A multi-layer soil temperature model for MM5. Preprints // The Sixth PSU/NCAR mesoscale model users’ workshop (Boulder, CO, USA). 1996. P. 22–24.
  14. Kusaka H., Kondo H., Kikegawa Y., Kimura F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models // Bound.-Lay. Meteorol. 2001. V. 101, N 3. P. 329–358.
  15. Taha H. Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-paramete­rization approach // J. Appl. Meteorol. 1999. V. 38, N 4. P. 466–473.
  16. Masson V. A physically-based scheme for the urban energy budget in atmospheric models // Bound-Lay. Meteorol. 2000. V. 94, N 3. P. 357–397.
  17. Nunez M., Oke T.R. The energy balance of an urban canyon // J. Appl. Meteorol. Clim. 1977. V. 16, N 1. P. 11–19.
  18. Salamanca F., Martilli A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations – Part I (II). Validation with one dimension off-line simulations // Theor. Appl. Climatol. 2010 V. 99, N 3. P. 345–356.
  19. Rockel B., Will A., Hense A. The regional climate model COSMO-CLM (CCLM) // Meteorol. Z. 2008. V. 17, N 4. P. 347–348.
  20. Trusilova K., Früh B., Brienen S., Walter A., Masson V., Pigeon G., Becker P. Implementation of an urban parameterization scheme into the regional climate model COSMO-CLM // J. Appl. Meteorol. Clim. 2013. V. 52, N 10. P. 2296–2311.
  21. Doms G., Baldauf M. A Description of the Nonhyd­rostatic Regional COSMO Model. Part II: Physical Parameterization. Offenbach: Deutscher Wetterdienst, 2011. 154 p.
  22. Wouters H., Demuzere M., Blahak U., Fortuniak K., Maiheu B., Camps J., Tielemans D., van Lipzig N.P. The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer // Geosci. Model Dev. 2016. V. 9, N 9. P. 3027–3054.
  23. Garbero V., Milelli M., Bucchignani E., Mercogliano P., Varentsov M., Rozinkina I., Rivin G., Blinov D., Wouters H., Schulz J.-P., Schättler U., Bassani F., Demuzere M., Repola F. Evaluating the urban canopy scheme TERRA_URB in the COSMO model for selected European cities // Atmosphere. 2021. V. 12, N 2. P. 237–261.
  24. Varencov M.I., Samsonov T.E., Kislov A.V., Konstantinov P.I. Vosproizvedenie ostrova tepla Moskovskoj aglomeracii v ramkah regional'noj klimaticheskoj modeli COSMO-CLM // Vestn. MGU. 2017 V. 5, N 6. P. 25–37.
  25. Samsonov T.E., Varencov M.I. Opredelenie parametrov gorodskoj sredy Moskovskogo megapolisa dlya detalizirovannogo chislennogo prognoza pogody v ramkah modeli COSMO // Meteorol. i gidrol. 2020. N 7. P. 112–119.
  26. Nemunaitis-Berry K.L., Klein P.M., Basara J.B., Fe­dorovich E. Sensitivity of predictions of the urban surface energy balance and heat island to variations of urban canopy parameters in simulations with the WRF model // J. Appl. Meteorol. Clim. 2017. V. 56, N 3. P. 573–595.
  27. Varentsov M., Samsonov T., Demuzere M. Impact of urban canopy parameters on a megacity’s modelled thermal environment // Atmosphere. 2020. V. 11, N 12. P. 1349.
  28. Wang Z.H., Bou-Zeid E., Au S.K., Smith J.A. Ana­lyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation // J. Appl. Meteorol. Clim. 2011. V. 50, N 9. P. 1795–1814.
  29. Au S.K., Beck J.L. Estimation of small failure pro­babilities in high dimensions by subset simulation // Probabilist. Eng. Mech. 2001. V. 16, N 4. P. 263–277.
  30. Morris K.I., Chan A., Morris K.J.K., Ooi M.C., Oozeer M.Y., Abakr Y.A., Nadzir M.S.M., Mohammed I.Y. Urbanisation and urban climate of a tropical conurbation, Klang Valley, Malaysia // Urban Clim. 2017. N 19. P. 54–71.
  31. Loridan T., Lindberg F., Jorba O., Kotthaus S., Grossman-Clarke S., Grimmond C.S.B. High resolution simulation of the variability of surface energy balance fluxes across central London with urban zones for energy partitioning // Bound-Lay. Meteorol. 2013. V. 147, N 3. P. 493–523.
  32. Chen L., Zhang M., Wang Y. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: A case study of Nanjing, China // Theor. Appl. Climatol. 2016. V. 125, N 3. P. 713–728.
  33. Holt T., Pullen J. Urban canopy modeling of the New York City metropolitan area: A comparison and va­lidation of single-and multilayer parameterizations // Mon. Weather Rev. 2007 V. 135, N 5. P. 1906–1930.
  34. Salamanca F., Martilli A., Yagüe C. A numerical study of the urban heat island over Madrid during the DESIREX (2008) campaign with WRF and an eva­luation of simple mitigation strategies // Int. J. Cli­matol. 2012. V. 32, N 15. P. 2372–2386.
  35. Morini E., Touchaei A.G., Castellani B., Rossi F., Cotana F. The impact of albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF model // Sustainability. 2016. V. 8, N 10. P. 1–14.
  36. Jandaghian Z., Akbari H. The effect of increasing surface albedo on urban climate and air quality: a detailed study for Sacramento, Houston, and Chicago // Climate. 2018. V. 6, N 2. P. 1–19.
  37. Barlage M., Miao S., Chen F. Impact of physics parameterizations on high resolution weather prediction over two Chinese megacities // J. Geophys. Res.: Atmos. 2016. V. 121, N 9. P. 4487–4498.
  38. Lam J.S.L., Lau A.K.H., Fung J.C.H. Application of refined land-use categories for high resolution mesoscale atmospheric modelling // Bound.-Lay. Meteorol. 2006. V. 119, N 2. P. 263–288.
  39. Stewart I.D., Oke T.R. Local climate zones for urban temperature studies // Bull. Am. Meteorol. Soc. 2012. V. 93, N 12. P. 1879–1900.
  40. Ching J., Mills G., Bechtel B., See L., Feddema J., Wang X., Ren C., Brousse O., Martilli A., Neophytou M., Mouzourides P., Stewart I., Hanna A., Ng E., Foley M., Alexander P., Aliaga D., Niyogi D., Shreeva­stava A., Bhalachandran P., Masson V., Hidalgo J., Fung J., Andrade M., Baklanov A., Dai W., Milcinski G., Demuzere M., Brunsell N., Pesaresi M., Miao S., Mu Q., Chen F., Theeuwes N. WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene // B. Am. Meteorol. Soc. 2018. V. 99, N 9. P. 1907–1924.
  41. Zonato A., Martilli A., Di Sabatino S., Zardi D., Giovannini L. Evaluating the performance of a novel WUDAPT averaging technique to define urban morphology with mesoscale models // Urban Clim. 2020. V. 31. P. 100584.
  42. Chen F., Dudhia J. Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity // Mon. Weather Rev. 2001. V. 129, N 4. P. 569–585.
  43. Tewari M., Chen F., Wang W., Dudhia J., LeMone M.A., Mitchell K., Ek M., Gayno G., Wegiel J., Cuenca R.H. Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5) // 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, 2004. V. 14. P. 11–15.
  44. Mostamandi S.V., Tarabukin I.A., Dorofeev E.V. Razvitie tekhnologij sverhkratkosrochnyh i kratkosrochnyh prognozov opasnyh meteorologicheskih yavlenij na osnove analiza dannyh nablyudenij i rezul'tatov chislennogo prognoza gidrodinamicheskoj modeli WRF // Tr. Glavnoj geofiz. observatorii im. A.I. Voejkova. 2015. N 579. P. 178–204.
  45. Smirnova M.M., Rubinshtejn K.G., Yushkov V.P. Ocenka vosproizvedeniya regional'noj model'yu harakteristik pogranichnogo sloya atmosfery // Meteorol. i gidrol. 2011. N 12. P. 5–16.
  46. Toropova M.L., Rusin I.N. Vosproizvedenie stratifikacii atmosfery s cel'yu prognoza konvektivnyh yavlenij pri pomoshchi mezomasshtabnoj modeli WRF–ARW // Tr. Glavnoj geofiz. observatorii im. A.I. Voejkova. 2019. N 593. P. 160–176.
  47. Iacono M.J., Delamere J.S., Mlawer E.J., Shep­hard M.W., Clough S.A., Collins W.D. Radiative for-cing by long lived greenhouse gases: Calculations with the AER radiative transfer models // J. Geophys. Res.: Atmos. 2008. V. 113, N 13. P. 22.
  48. Thompson G., Field P.R., Rasmussen R.M., Hall W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implemen­tation of a new snow parameterization // Mon. Weather Rev. 2008. V. 136, N 12. P. 5095–5115.
  49. Janjic Z.I. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes // Mon. Weather Rev. 1994. V. 122. P. 927–945.
  50. Zhang C., Wang Y., Hamilton K. Improved representation of boundary layer clouds over the southeast Pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme // Mon. Weather Rev. 2011. V. 139, N 11. P. 3489–3513.
  51. Friedl M.A., Sulla-Menashe D., Tan B., Schneider A., Ramankutty N., Sibley A., Huang X. MODIS Col­lection 5 global land cover: Algorithm refinements and characterization of new datasets // Remote Sens. Environ. 2010. V. 114, N 1. P. 168–182.
  52. Ladohina E.M., Rubinshtejn K.G. Analiz vliyaniya megapolisa Sankt-Peterburg na osadki i veter dlya validacii chislennogo prognoza pogody // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 36–45; Ladokhina E.M., Rubinshtein K.G. Analysis of the effect of the St. Petersburg megalopolis on precipitation and wind for validation of numerical weather forecasts // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 239–249.
  53. Matveev L.T., Matveev Yu.L. Oblaka i vihri – osnova kolebanij pogody i klimata. SPb.: RGGMU, 2005. 327 p.
  54. Ladohina E.M., Rubinshtejn K.G., Cepelev V.Yu. Opredelenie periodov maksimal'noj intensivnosti ostrova tepla v Sankt-Peterburge dlya validacii modeli chislennyh prognozov pogody v gorode // Gidromet. issled. i prognozy. 2020. N 2. P. 109–125.