Vol. 35, issue 11, article # 5

Virolainen Ya. A., Timofeev Yu. M., Poberovsky A. V., Polyakov A. V. Information content of ground-based FTIR method for atmospheric HNO3 vertical structure retrieval. // Optika Atmosfery i Okeana. 2022. V. 35. No. 11. P. 906–911. DOI: 10.15372/AOO20221105 [in Russian].
Copy the reference to clipboard


Nitric acid plays an important role in atmospheric chemistry; therefore, it is currently monitored by various methods and instruments. Ground-based FTIR method based on spectral measurements of solar radiation by Bruker Optics IFS 125HR spectrometers allows to retrieve not only the total column HNO3, but also its content in several atmospheric layers. We analyze time series of HNO3 measurements at St. Petersburg NDACC site between 2009 and 2021. We demonstrate that FTIR measurements can provide information on HNO3 content in at least two atmospheric layers; the degrees of freedom for signal in average totals 3.1. The mean random error of HNO3 measurements amount to 3.9, 14 and 1.6% for total atmospheric, tropospheric (up to 15 km), and stratospheric (above


atmospheric nitric acid, information content and accuracy of measurements, vertical resolution, FTIR ground-based measurements


1. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316.
2. Scientific Assessment of Ozone Depletion: 2002. World Meteorological Organization Global Ozone Research and Monitoring Project. Rep. N 47. Geneva: WMO, UNEP, 2003. 485 p.
3. Smyshlyaev S.P., Galin V.Ya., Shaarijbuu G., Motsakov M.A. Modelirovanie izmenchivosti gazovyh i aerozol'nyh sostavlyayushchih v stratosfere polyarnyh rajonov // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 3. P. 291–306.
4. NCAR. Atmospheric chemistry observation & modeling. URL: https://www2.acom.ucar.edu/irwg (last access: 3.07.2022).
5. Wood S.W., Batchelor R.L., Goldman A., Rinsland C.P., Connor B.J., Murcray F.J., Stephen T.M., Heuff D.N. Ground-based nitric acid measurements at Arrival heights, Antarctica, using solar and lunar Fourier transform infrared observations // J. Geophys. Res.: Atmos. 2004. V. 109. D18307.
6. Ronsmans G., Langerock B., Wespes C., Hannigan J.W., Hase F., Kerzenmacher T., Mahieu E., Schneider M., Smale D., Hurtmans D., De Mazière M., Clerbaux C., Coheur P.-F. First characterization and validation of FORLI-HNO3 vertical profiles retrieved from IASI/Metop // Atmos. Meas. Tech. 2016. V. 9, N 9. P. 4783–4801.
7. Nakajima H., Murata I., Nagahama Y., Akiyoshi H., Saeki K., Kinase T., Takeda M., Tomikawa Y., Dupuy E., Jones N.B. Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa Station, Antarctica, in 2007 and 2011 // Atmos. Chem. Phys. 2020. V. 20, N 2. P. 1043–1074.
8. Virolajnen Ya.A., Timofeev Yu.M., Polyakov A.V., Ionov D.V., Kirner O., Poberovskij A.V., Imhasin H. Sopostavlenie nazemnyh izmerenij obshchego soderzhaniya О3, HNO3, HCl i NO2 c dannymi chislennogo modelirovaniya // Izv. RAN. Fiz. atmosf. i okeana. 2016. V. 52, N 1. P. 64–73.
9. Virolajnen Ya.A., Polyakov A.V., Timofeev Yu.M. Analiz izmenchivosti stratosfernyh gazov po dannym nazemnyh spektroskopicheskih nablyudenij v rajone Sankt-Peterburga // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 2. P. 163–174.
10. Rodgers C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific Publishing, 2000. 243 p.
11. Connor B.J., Sherlock V., Toon G., Wunch D., Wennber P.O. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra // Atmos. Meas. Tech. 2016. V. 9, N 8. P. 3513–3525.
12. Schneider M., Blumenstock T., Chipperfield M.T., Hase F., Kouker W., Reddmann T., Ruhnke R., Cuevas E., Fischer H. Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izana (28° N, 16° W): Five-year record, error analysis, and comparison with 3-D CTMs // Atmos. Chem. Phys. 2005. V. 5, N 1. P. 153–167.
13. Senten C., De Mazière M., Vanhaelewyn G., Vigouroux C. Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements // Atmos. Meas. Tech. 2012. V. 5, N 1. P. 161–180.
14. Vigouroux C., De Mazière M., Errera Q., Chabrillat S., Mahieu E., Duchatelet P., Wood S., Smale D., Mikuteit S., Blumenstock T., Hase F., Jones N. Comparisons between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE // Atmos. Chem. Phys. 2007. V. 7, N 2. P. 377–396.
15. Shan C., Zhang H., Wang W., Liu C., Xie Y., Hu Q., Jones N. Retrieval of stratospheric HNO3 and HCl based on ground-based high-resolution Fourier transform spectroscopy // Remote Sens. 2021. V. 13, N 11. P. 2159.
16. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.E., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.P., Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.-P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen Ahmadi N., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Šimečková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J. The HITRAN2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
17. Hase H., Hannigan J.W., Coffey M.T., Goldman A., Hoepfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 87, N 1. P. 25–52.
18. Park M., Randel W.J., Kinnison D.E., Emmons L.K., Bernath P.F., Walker K.A., Boone C.D., Livesey M.J. Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM // J. Geophys. Res. Atmos. 2013. V. 118, N 4. P. 1964–1980.
19. Bernath P.F., Crouse J., Hughes R.C., Boone C.D. The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) version 4.1 retrievals: Trends and seasonal distributions // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 259. P. 107409.
20. Aura MLS // Jet Propulsion Laboratory URL: https://mls.jpl.nasa.gov/eos-aura-mls/data-products/hno3 (last access: 3.07.2022).
21. Polyakov A., Poberovsky A., Makarova M., Virolainen Y., Timofeyev Y., Nikulina A. Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019 // Atmos. Meas. Tech. 2021. V. 14, N 8. P. 5349–5368.
22. Virolainen Y., Timofeyev Y., Berezin I., Poberovsky A., Polyakov A., Zaitsev N., Imhasin H. Atmospheric integrated water vapour measured by IR and MW techniques at the Peterhof site (Saint Petersburg, Russia) // Intern. J. Rem. Sens. 2016. V. 37, N 16. P. 3771–3785.