Vol. 35, issue 11, article # 3

Kapitanov V. A., Ponurovskii Ya. Ya., Osipov K. Yu., Ponomarev Yu. N. Pure NH3 spectrum measurements and analysis of overlapping absorption lines in 6611.6–6613.5 cm-1 region. // Optika Atmosfery i Okeana. 2022. V. 35. No. 11. P. 896–902. DOI: 10.15372/AOO20221103 [in Russian].
Copy the reference to clipboard

Abstract:

The results of experimental studies of absorption spectra of pure NH3 at room temperature in the ranges 6604.3–6606.3 and 6611.6–6613.5 cm-1 and pressure of up to 0.04 atm are presented. The measurements were carried out at the Department of Diode Laser Spectroscopy of the Institute of General Physics at a high-sensitivity high-resolution diode laser spectrometer with a signal-to-noise ratio of ~ 1400. The spectra were analyzed using a Voigt contour. The results of retrieving the parameters of spectral absorption lines are presented: the positions of centers, intensities, and coefficients of collisional self-broadening and shifts. A comparison was made with the parameters from HITRAN database. A two-fold difference between the measured intensities of a number of lines and the HITRAN values was found.

Keywords:

NH3, diode laser spectroscopy, spectral line, lineshape, line parameters, HITRAN

Figures:

References:

  1. Aneja V.P., Roelle P.A., Murray G.C., Southerland J., Erisman J.W., Fowler D., Hasman W.A., Patni N. Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment // Atmos. Environ. 2001. V. 35, N 11. P. 1903–1911.
  2. Ponurovskii Ya.Ya., Zaslavskii V.Ya., Nadezhdinskii A.I., Spiridonov M.V., Stavrovskii D.B., Shapovalov Yu.P., Karabinenko A.A., Petrenko Yu.M. Diode laser spectroscopy for creating effective measuring systems and their use in biological and medical research // Biophysics. 2019. V. 64, N 6. P. 870–884.
  3. Bobrutzki K., Braban C.F., Famulari D., Jones S.K., Blackall T., Smith T.E.L., Blom M., Coe H., Gallagher M., Ghalaieny M., McGillen M.R., Percival C.J., Whitehead J.D., Ellis R., Murphy J., Mohacsi A., Pogany A., Junninen H., Rantanen S., Sutton M.A., Nemitz E. Field inter-comparison of eleven atmospheric ammonia measurement techniques // Atmos. Meas. Tech. 2010. V. 3, N 1. P. 91–112.
  4. Ricci P.P., Gregory O.J. Sensors for the detection of ammonia as a potential biomarker for health screening // Sci Rep. 2021. V. 11, N 1. P. 7185.
  5. Sung K., Brown L.R., Huang X., Schwenke D.W., Lee T.J., Coy S.L., Lehmann K.K. Extended line positions, intensities, empirical lower state energies and quantum assignments of NH3 from 6300 to 7000 cm−1 // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 11. P. 1066–1083.
  6. Kapitanov V.A., Osipov K.Yu., Protasevich A.E., Ponomarev Yu.N., Ponurovskii Ya.Ya. Effekt Dike, stolknovitel'noe suzhenie i interferentsiya pri samoushirenii linij pogloshcheniya CO2 v polose 30013  00001. Izmereniya i testirovanie modelej kontura // Optika atmosf. i okeana. 2021. V. 34, N 5. P. 334–342; Kapitanov V.A., Osipov K.Yu., Protasevich A.E., Ponomarev Yu.N., Ponurovskii Ya.Ya. Dicke narrowing, pressure dependence, and mixing of self-broadened CO2 absorption lines in the 30013  00001 band: Measurements and line profile testing // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 381–389.