Vol. 35, issue 11, article # 2

Plastinina D. M., Chesnokov E. N. Study of the methane spectrum near 1653 nm in the 298–720 К temperature range with a diode laser. // Optika Atmosfery i Okeana. 2022. V. 35. No. 11. P. 891–895. DOI: 10.15372/AOO20221102 [in Russian].
Copy the reference to clipboard


The methane spectrum is studied near R(3) and R(4) multiplets of the first vibrational overtone in the 298–720 K temperature range with a tuning diode laser. We have developed the technique for laser radiation measurement and frequency calibration with the use of a high-stability plain-mirror interferometer. The coefficients of collisional broadening by nitrogen are calculated at different temperatures.


methane spectrum, collisional broadening, diode laser, Fabry–Perot interferometer


  1. Reisinger A., Meinshausen M., Manning M., Bodeker G. Uncertainties of global warming metrics: CO2 and CH4 // Geophys. Res. Lett. 2010. V. 37. DOI: 10.1029/2010GL043803.
  2. Ehret G., Bousquet P., Pierangelo C., Alpers M., Millet B., Abshire J.B., Bovensmann H., Burrows J.P., Chevallier F., Ciais P., Crevoisier C., Fix A., Flamant P., Frankenberg C., Gibert F., Heim B., Heimann M., Houweling S., Hubberten H.W., Jöckel P., Law K., Löw A., Marshall J., Agusti-Panareda A., Payan S., Prigent C., Rairoux P., Sachs T., Scholze M., Wirth M. MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane // Remote Sens. 2017. V. 9, N 10. P. I 1052. DOI: 10.3390/rs9101052.
  3. Delahaye T., Maxwell S.E., Reed Z.D., Lin H., Hodges J.T., Sung K., Devi V.M., Warneke T., Spietz P., Tran H. Precise methane absorption measurements in the 1.64 mum spectral region for the MERLIN mission // J. Geophys. Res.: Atmos. 2016. V. 121, N 12. P. 7360–7370. DOI: 10.1002/2016JD025024.
  4. Campargue A., Leshchishina O., Wang L., Mondelain D., Kassi S. The WKLMC empirical line lists (5852–7919 cm-1) for methane between 80 K and 296 K: “Final” lists for atmospheric and planetary applications // J. Mol. Spectrosc. 2013. V. 291. P. 16–22. DOI: 10.1016/j.jms.2013.03.001.
  5. Ghysels M., Vasilchenko S., Mondelain D., Béguier S., Kassi S., Campargue A. Laser absorption spectroscopy of methane at 1000 K near 1.7 μm: A validation test of the spectroscopic databases // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 215. P. 59–70. DOI: 10.1016/j.jqsrt.2018.04.032.
  6. Butterfly Laser Diode for Gas Detection (Ultra Narrow Linewidth 1653 nm butterfly laser diode). URL: http://laserdiodedevice.com/1-3-butterfly-pigtail-laser-modules.html (last access: 31.05.2022).
  7. Mihajlenko S.N., Babikov YU.L., Golovko V.F. Informatsionno-vychislitel'naya sistema «Spektroskopiya atmosfernyh gazov». Struktura i osnovnye funktsii // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 765–776.
  8. Kapitanov V.A., Ponomarev Yu.N., Protasevich A.E., Osipov K.Yu. Lineshape models testing on CH4 spectral line 6105–6257 cm-1 (R9F1, R9F2) of 2ν3 band broadened by N2 and Ne // J. Mol. Spectrosc. 2015. V. 315. P. 114–136. 2013. V. 291. P. 57–60. DOI: 10.1016/j.jms.2013.03.009.
  9. Devi V.M., Benner D.C., Sung K., Crawford T.J., Yu S., Brown L.R., Smith M.A.H., Mantz A.W., Boudon V., Ismail S. Self- and air-broadened line shapes in the 2ν3 P- and R-branches of 12CH4 // J. Mol. Spectrosc. 2015. V. 315. P. 114–136. DOI: 10.1016/j.jms.2015.05.003.