Vol. 35, issue 10, article # 8

Moiseenko K. B., Vasilieva A. V., Skorochod A. I., Shtabkin Yu. A., Belikov I. B., Repin A. Yu. O3–NO–NO2 photostationary state and near-surface ozone generation from ZOTTO Tower data (central Siberia). // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 850–857. DOI: 10.15372/AOO20221008 [in Russian].
Copy the reference to clipboard


The rates of ozone production (P) and sink (L) and total peroxide (OX) content are assessed with the use of the photostationary state approach from measurements of ozone (O3) and nitrogen oxides (NO, NO2) at Zotino Tall Tower Observatory (ZOTTO), central Siberia, in 2007–2014. Mean diurnal cycles of the above quantities for May – September cloud-free days peak at 6 ppb/hour (P), 1.4 ppb/hour (L), and 115 ppb ([OX]) between 11:00 and 15:00 local time. The linear dependence of P on [NOx] is derived in the range of measured NOx mixing ratios from 0.2–0.8 ppb, suggesting for NOx-limiting conditions of ozone production, with the slope rate P(O3)/[NOx] estimated at 13 (ppb/h)/ppb. The estimated high OX levels along with the condition >> L manifest for high rates of the in-situ oxidation of biogenic volatile organic compounds and ozone generation. The surface air layer in boreal forest around the site can be considered an ozone source for the atmospheric boundary layer over remote central Siberia at NOx levels characteristic for both weakly polluted and clean (background) air masses


atmospheric boundary layer, ozone generation, peroxy radical, volatile organic compound, ZOTTO Tower


  1. Calvert J.G. Test of the theory of ozone generation in Los Angeles atmosphere // Environ. Sci. Technol. 1976. V. 10, N 3. P. 248–256.
  2. Parrish D.D., Trainer M., Williams E.J., Fahey D.W., Hubler G., Eubank C.S., Liu S.C., Murphy P.C., Albritton D.L. Fehsenfeld F.C. Measurements of the NOx-O3 photostationary state at Niwot Ridge, Colorado // J. Geophys. Res. 1986. V. 91, N D5. P. 5361–5370.
  3. Kleinman L., Lee Y.-N., Springston S.R., Lee J.H., Nunnermacker L., Weinstein-Lloyd J., Zhou X., Newman L. Peroxy radical concentration and ozone formation rate at a rural site in the southeastern United States // J. Geophys. Res. 1995. V. 100, N D4. P. 7263–7273.
  4. Thorp T., Arnold S.R., Pope R.J., Spracklen D.V., Conibear L., Knote C., Arshinov M., Belan B., Asmi E., Laurila T., Skorokhod A.I., Nieminen T., Petäjä T. Late-spring and summertime tropospheric ozone and NO2 in western Siberia and the Russian Arctic: Regional model evaluation and sensitivities // Atmos. Chem. Phys. 2021. V. 21. P. 4677–4697.
  5. Kotel'nikov S.N. Osnovnye mekhanizmy vzaimodejstviya ozona s zhivymi sistemami i osobennostyami problemy prizemnogo ozona dlya Rossii // Ros. akad. nauk. Tr. in-ta obshch. fiz. im. A.M. Prohorova. 2015. V. 71. P. 10–41.
  6. Hoshika Y., Paoletti E., Agathokleous E., Sugai T., Koike T. Developing ozone risk assessment for larch species // Front. Glob. Change. 2020. V. 3, N 45. P. 3–45.
  7. Wolfe G.M., Thornton J.A., Bouvier-Brown N.C., Gold­stein A.H., Park J.-H., McKay M., Matross D.M., Mao J., Brune W.H., LaFranchi B.W., Browne E.C., Min K.-E., Wooldridge P.J., Cohen R.C., Crounse J.D., Faloona I.C., Gilman J.B., Kuster W.C., de Gouw J.A., Huisman A., Keutsch F.N. The Chemistry of Atmosphere-Forest Exchange (Cafe) Model – Part 2: Application to BEARPEX-2007 observations // Atmos. Chem. Phys. 2011. V. 11. P. 1269–1294.
  8. Peräkylä O., Vogt M., Tikkanen O.-P., Laurila T., Kajos M.K., Rantala P.A., Patokoski J., Aalto J., Yli-Juuti T., Ehn M., Sipila M., Paasonen P., Rissanen M., Nieminen T., Taipale R., Keronen P., Lappalainen H.K., Ruuskanen T.M., Rinne J., Kerminen V.-M., Kulmala M., Back J., Petaja T. Monoterpenes oxidation capacity and rate over a boreal forest: Temporal variation and connection to growth of newly formed particles // Boreal Environ. Res. 2014. V. 19. P. 293–310.
  9. Chi X., Winderlich J., Mayer J.-C., Panov A.V., Heimann M., Birmili W., Heintzenberg J., Cheng Y., Andreae M.O. Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga // Atmos. Chem. Phys. 2013. V. 13. P. 12271–12298.
  10. Moiseenko K.B., Vasileva A.V., Skorokhod A.I., Belikov I.B., Repin A.Yu., Shtabkin Yu.A. Regional impact of ozone precursor emissions on NOx and O3 levels at ZOTTO tall tower in central Siberia // Earth Space Sci. 2021. V. 8. e2021EA001762.
  11. Antohin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Kozlov A.B., Krasnov O.A., Praslova O.V., Rasskazchikova T.M., Savkin D.E., Tolmachev G.N., Fofonov A.V. Sutochnaya dinamika vertikal'nogo raspredeleniya ozona v pogranichnom sloe atmosfery v rajone Tomska // Optika atmosf. i okeana. 2013. V. 26, N 8. P. 665–672.
  12. Belan B.D., Tolmachev G.N., Fofonov A.V. Vertikal'noe raspredelenie ozona v troposfere nad yugom Zapadnoj Sibiri // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 777–783; Belan B.D., Tolmachev G.N., Fofonov A.V. Ozone vertical distribution in the troposphere over south regions of Western Siberia // Atmos. Ocean. Opt. 2011. V. 24, N 2. P. 181–187.
  13. Moiseenko K.B., Shtabkin Yu.A., Berezina E.V., Skorohod A.I. Regional'nye fotohimicheskie istochniki prizemnogo ozona v Evrope i Zapadnoj Sibiri // Izv. RAN, Fiz. Atmosf. i okeana. 2018. V. 54, N 6. P. 645–658.
  14. Crowley J.N., Pouvesle N., Phillips G.J., Axinte R., Fischer H., Petäjä T., Nölscher A., Williams J., Hens K., Harder H., Martinez-Harder M., Novelli A., Kubistin D., Bohn B., Lelieveld J. Insights into HOx and ROx chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide // Atmos. Chem. Phys. 2018. V. 18. P. 13457–13479.
  15. Stockwell W.R., Middleton P., Chang J.S., Tang X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling // J. Geophys. Res. 1990. V. 95, N D10. P. 16343–16367.
  16. Chameides W.L., Davis D.D., Rodgers M.O., Bradshaw J., Sandholm S., Sachse G., Hill G., Gregory G., Rasmussen R. Net ozone photochemical production over the eastern and central North Pacific as inferred from GTE/CITE 1 observations during fall 1983 // J. Geophys. Res. 1987. V. 92. P. 2131–2152.
  17. Madronich S. Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds // J. Geophys. Res. 1987. V. 92. P. 9740–9752.
  18. Demerjian K.L., Schere K.L., Peterson J.T. Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere // Adv. Environ. Sci. Technol. 1980. V. 10. P. 369–459.
  19. Trebs I., Bohn B., Ammann C., Rummel U., Blumthaler M., Königstedt R., Meixner F.X., Fan S., Andreae M.O. Relationship between the NO2 photolysis frequency and the solar global irradiance // Atmos. Meas. Tech. 2009. V. 2. P. 725–739.
  20. Shetter R.E., Stedman D.H., West D.H. The NO/ NO2/O3 photostationary state in Claremont, California // J. Air Pollut. Control Assoc. 1983. V. 33, N 3. P. 212–214.
  21. Mannschreck K., Gilge S., Plass-Duelmer C., Fricke W., Berresheim H. Assessment of the applicability of NO–NO2–O3 photostationary state to long-term measurements at the Hohenpeissenberg GAW Station, Germany // Atmos. Chem. Phys. 2004. V. 4. P. 1265–1277.
  22. Griffin R.J., Beckman P.J., Talbot R.W., Sive B.C., Varner R.K. Deviations from ozone photostationary state during the International consortium for atmospheric research on transport and transformation 2004 campaign: Use of measurements and photochemical modeling to assess potential causes // J. Geophys. Res. 2007. V. 112. P. D10S07.
  23. Rohrer F., Brüning D., Grobler E.S., Weber M., Ehhalt D.H., Neubert R., Schüßler W., Levin I. Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN Field campaign at a rural site in Germany // J. Atmos. Chem. 1998. V. 31. P. 119–137.
  24. Cantrell C.A., Shetter R.E., Calvert J.G., Parrish D.D., Fehsenfeld F.C., Goldan P.D., Kuster W., Williams E.J., Westberg H.H., Allwine G., Martin R. Peroxy radicals as measured in ROSE and estimated from photostationary state deviations // J. Geophys. Res. 1993. V. 98, N D10. P. 18 355–18 366.
  25. Sillman S., Logan J.A., Wofsy S.C. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes // J. Geophys. Res. 1990. V. 95. P. 1837–1851.
  26. Berezina E.V., Moiseenko K.B., Skorokhod A.I., Elansky N.F., Belikov I.B., Pankratova N.V. Isoprene and monoterpenes over Russia and their impacts in tropospheric ozone formation // Geogr. Environ. Sustain. 2019. V. 12, N 1. P. 63–74.