Vol. 35, issue 10, article # 5

Smalikho I. N., Banakh V. A., Razenkov I. A., Sukharev A. A., Falits A. V., Sherstobitov A. M. Comparison of the results of joint measurements with Stream Line and LRV coherent Doppler lidars. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 826–835. DOI: 10.15372/AOO20221005 [in Russian].
Copy the reference to clipboard


A pulsed coherent Doppler lidar (PCDL) developed at the Wave Propagation Laboratory of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (LRV lidar) was tested in two experiments carried out in 2021 at the Basic Experimental Observatory of Institute of Atmospheric Optics SB RAS and on the coast of Lake Baikal. In those experiments, a serial Stream Line PCDL (HALO Photonics, Great Britain) was also involved. The comparative analysis of estimates of the average horizontal and vertical wind speeds from measurements with Stream Line and LRV lidars showed a good agreement between the results (the correlation coefficient of the estimates is 0.98 with a 30-minute averaging of the data).


coherent Doppler lidar, wind velocity



  1. Banakh V.A., Smalikho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
  2. Ando T., Furuta M., Tanaka H., Nagashima M., Kameyama S., Suzuki J., Hirano Y. Development of low cost all-fiber coherent Doppler lidar (CDL) system // Proc. of the 13th Coherent Laser Radar Conference. Kamakura, Japan. 2005. P. 170–173.
  3. Kameyama S., Ando T., Asaka K., Hirano Y., Wadaka S. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing // Appl. Opt. 2007. V. 6, N 11. P. 1953–1962.
  4. Ando T, Kameyama S., Hirano Y. All-fiber coherent Doppler lidar technologies at Mitsubishi Electric Corporation // IOP Conf. Ser.: Earth Environ. Sci. 2008. V. 1. P. 012011. DOI:10.1088/1755-1307/1/1/012011.
  5. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  6. Parmentier R., Boquet M., Cariou J.P., Sauvage L. WindcubeTM pulsed lidar compact wind profiler: Overview on more than two years of comparison with calibrated sensors at different location // Proc. of the 15th Coherent Laser Radar Conf., Toulouse, France, 2009. P. 267–270.
  7. Dolfi-Bouteyre A., Augere B., Valla M., Goular D., Fleury D., Canat G., Planchat C., Gaudo T., Besson C., Gilliot A., Cariou J.-P., Petilon O., Lawson-Daku J., Brousmiche S., Lugan S., Bricteux L., Macq B. Aircraft wake vortex study and characterization with 1.5 m fiber Doppler LiDAR // J. Aerosp. Lab. 2009, AL01-07, P. 1–14.
  8. Dolfi-Bouteyre A., Canat G., Valla M., Augere B., Besson C., Goular D., Lombard L., Cariou J.P., Durecu A., Fleury D., et al. Pulsed 1.5-mm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier // IEEE J. Sel. Top. Quantum Electron. 2009. V. 15. P. 441–450.
  9. Kameyama S., Sakimura T., Watanabe Y., Ando T., Asaka K., Tanaka H., Yanagisawa T., Hirano Y., Inokuchi H. Wind sensing demonstration of more than 30 km measurable range with a 1.5 mm coherent Doppler LIDAR which has the laser amplifier using Er,Yb:glass planar waveguide // Proc. SPIE. 2012. V. 8526. P. 85260E. DOI: 10.1117/12.977330.
  10. Jia X., Sun D., Xie S., Wu X. Development of 1.55 mm coherent lidar for wind and wake vortex sensing // Proc. 18th Coherent Laser Radar Conf. Boulder, USA. 2016. P. P12.
  11. Cariou J.P., Thobois L., Germon Q., Dolfi-Bouteyre A., Durecu A. Development of a high power Doppler Wind Lidar for measuring wind and EDR along aircraft approaches // Proc. 18th Coherent Laser Radar Conf. Boulder, USA. 2016. P. M7.
  12. Jiqiao Liu, Weibiao Chen, Xiaolei Zhu, Xiaopeng Zhu, Xin Zhang, Yuan Liu, Wei Shi. Development of 1.5 mm all-fiber pulsed coherent Doppler wind lidar // Proc. 18th Coherent Laser Radar Conf. Boulder, USA. 2016. P. M16.
  13. Boquet M., Royer P., Pureur V., Cariou J.P., Smith M. Long range off-shore wind assessment by high power scanning lidars // Proc. 18th Coherent Laser Radar Conf. Boulder, USA. 2016. P. T2.
  14. Wu S., Liu B., Liu J., Zha iX., Feng C., Wang G., Zhang H., Yin J., Wang X., Li R., Gallacher D. Wind turbine wake visualization and characteristics analysis by Doppler lidar // Opt. Express. 2016. V. 24, N 10. DOI: 10.1364/OE.24.00A762.
  15. Vasiljevic N., Lea G., Courtney M., Cariou J.P., Mann J., Mikkelsen T. Long-Range WindScanner System // Remote Sens. 2016. V. 8. P. 896. DOI: 10.3390/ rs8110896.
  16. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208.
  17. Banakh V.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar // Remote Sens. 2021. V. 13. P. 2071. DOI: 10.3390/rs13112071.
  18. Banakh V.A., Nadeev A.I., Razenkov I.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Test results of a pulsed coherent Doppler lidar created at the Institute of Atmospheric Optics SB RAS // Proc. SPIE. 2019. V. 11208. CID: 11208 5K. [11208-323]. P. 112085K-1-112085K-9. DOI: 10.1117/12.2540944.
  19. Smalikho I.N., Banakh V.A., Holzäpfel F., Rahm S. Otsenivanie parametrov samoletnyh vihrej iz massiva radial'nyh skorostej, izmerennyh kogerentnym doplerovskim lidarom // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 742–750.
  20. Stephan A., Wildmann N., Smalikho I.N. Effektivnost' metoda MFAS dlya opredeleniya vektora skorosti vetra iz izmerenij lidarom Windcube 200s // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 725–733; Stephan A., Wildmann N., Smalikho I.N. Effectiveness of the MFAS method for determining the wind velocity vector from Windcube 200s lidar measurements // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 555–563.
  21. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. DOI: 10.5194/ amt-9-5239-2016.