Vol. 35, issue 09, article # 3

Skorokhodov A. V., Konoshonkin A. V. Statistical analysis for parameters of specularly reflective layers in high-level clouds over Western Siberia based on MODIS data. // Optika Atmosfery i Okeana. 2022. V. 35. No. 09. P. 711–716. DOI: 10.15372/AOO20220903 [in Russian].
Copy the reference to clipboard

Abstract:

The approbation results for the algorithm of detecting specularly reflecting layers in high-level clouds based on passive satellite data are presented. We consider cirrus clouds with an optical thickness of less than 5 and a top height of more than 8300 m consisting of horizontally oriented ice crystals, observed over the territory of Western Siberia from 2006 to 2007. The technique for detecting specularly reflecting layers in high-level clouds is described and the statistical analysis of their parameters is performed on the basis of spectroradiometer MODIS satellite data. We discuss the seasonal and latitudinal properties of the parameters of considered clouds over Western Siberia..The typical values of the area, top height, reflection ratio, and effective emissivity of specularly reflecting layers over different latitudinal zones of the target region were estimated for the first time.

Keywords:

specular reflective layer, high-level cloud, oriented particle, satellite data, statistical characteristics

Figures:

References:

  1. Ceppi P., Brient F., Zelinka M.D., Hartmann D.L. Cloud feedback mechanisms and their representation in global climate models // WIREs Clim. Change. 2017. V. 8. P. e465.
  2. Lohmann U., Neubauer D. The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2 // Atmos. Chem. Phys. 2018. V. 18. P. 8807–8828.
  3. Voigt A., Albern N., Ceppi P., Grise K., Li Y., Medeiros B. Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change // WIREs Clim. Change. 2021. V. 12. P. e694.
  4. Oblaka i oblachnaya atmosfera. Spravochnik / pod red. I.P. Mazina, A.H. Hrgiana. L.: Gidrometeoizdat, 1989. 647 p.
  5. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Cole B.H., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 123–139.
  6. Platt C.M.R. Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals // J. Appl. Meteorol. 1978. V. 17. P. 1220–1224.
  7. Balin Yu.S., Kaul' B.V., Kohanenko G.P. Nablyudeniya zerkal'no otrazhayushchih chastits i sloev v kristallicheskih oblakah // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 293–299.
  8. Samohvalov I.V., Kaul' B.V., Nasonov S.V., Zhivotenyuk I.V., Bryuhanov I.D. Matritsa obratnogo rasseyaniya sveta zerkal'no otrazhayushchih sloev oblakov verhnego yarusa, obrazovannyh kristallicheskimi chastitsami, preimushchestvenno orientirovannymi v gorizontal'noj ploskosti // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 403–411.
  9. Konoshonkin A., Borovoi A., Kustova N., Okamoto H., Ishimoto H., Grynko Y., Förstner J. Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 195. P. 132–140.
  10. Kaul' B.V., Samohvalov I.V. Orientatsiya chastits kristallicheskih oblakov Ci: Part 1. Orientatsiya pri padenii // Optika atmosf. i okeana. 2005. V. 18, N 11. P. 963–967.
  11. Sassen K. The polarization lidar technique for cloud research: A review and current assessment // Bull. Am. Meteorol. Soc. 1991. V. 72, N 12. P. 1848–1866.
  12. Kokhanenko G.P., Balin Y.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers // Atmos. Meas. Tech. 2020. V. 13, N. 3. P. 1113–1127.
  13. Neely R.R., Hayman M., Stillwell R., Thayer J.P., Hardesty R.M., O’Neill M., Shupe M.D., Alvarez C. Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation // J. Atmos. Ocean. Technol. 2013. V. 30, N 8. P. 1635–1655.
  14. Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A. Overview of the CALIPSO mission and CALIOP data processing algorithms // J. Atmos. Ocean. Technol. 2009. V. 26. P. 2310–2323.
  15. Sassen K., Kayetha V.K., Zhu J. Ice cloud depolarization for nadir and off-nadir CALIPSO measurements // Geophys. Res. Lett. 2012. V. 39. P. L20805.
  16. Skorohodov A.V., Konoshonkin A.V. Sopostavlenie sputnikovyh aktivnyh i passivnyh nablyudenij zerkal'no otrazhayushchih sloyov v oblakah verhnego yarusa // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021. V. 18, N 3. P. 279–287.
  17. Matveev Yu.L., Matveev L.T., Soldatenko S.A. Global'noe pole oblachnosti. L.: Gidrometeoizdat, 1986. 279 p.
  18. Ackerman S.A., Frey R., Heidinger A., Li Y., Walther A., Platnick S., Meyer K.G., Wind G., Amarasinghe N., Wang C., Marchant B., Holz R., Dutcher S., Hubanks P. EOS MODIS and SNPP VIIRS Cloud Properties: User Guide for the Climate Data Record Continuity Level-2 Cloud Top and Optical Properties Product (CLDPROP). Greenbelt, USA: NASA, 2019. 65 p.
  19. Avery M.A., Ryan R.A., Getzewich B.J., Vaughan M.A., Winker D.M., Hu Y., Garnier A., Pelon J., Verhappen C.A. CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles // Atmos. Meas. Tech. 2020. V. 13. P. 4539–4563.
  20. KН-01 SYNOP. Kod dlya operativnoj peredachi dannyh prizemnyh meteorologicheskih nablyudenij s seti stantsij Rosgidrometa / pod red. N.P. Fahrutdinova. M.: Gidromettsentr Russia, 2013. 79 p.
  21. Skorohodov A.V., Nasonov S.V., Konoshonkin A.V. Sopostavlenie sputnikovyh passivnyh i nazemnyh lidarnyh nablyudenij zerkal'no otrazhayushchih sloev oblakov verhnego yarusa // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. V. 16, N 6. P. 263–271.
  22. Noel V., Chepfer H. A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) // J. Geophys. Res. 2010. V. 115. P. D00H23.
  23. Zhou C., Yang P., Dessler A.E., Liang F. Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations // Geosci. Remote Sens. Lett. 2013. V. 10. P. 986–990.
  24. Kikuchi M., Okamoto H., Sato K. A climatological view of horizontal ice plates in clouds: Findings from nadir and off-nadir CALIPSO observations // J. Geophys. Res. Atmos. 2021. V. 126. P. e2020JD033562.
  25. Perevedentsev Yu.P., Mohov I.I., Eliseev A.V. Teoriya obshchej tsirkulyatsii atmosfery: uchebnoe posobie / pod red. E.P. Naumova. Kazan': Kazan. un-t, 2013. 224 p.
  26. Bony S., Stevens B., Frierson D.M.W., Jakob C., Kageyama M., Pincus R., Shepherd T.G., Sherwood S.C., Siebesma A.P., Sobel A.H., Watanabe M., Webb M.J. Clouds, circulation and climate sensitivity // Nat. Geosci. 2015. V. 8. P. 261–268.