Vol. 35, issue 09, article # 11

Baksht E. H., Vinogradov N. P., Tarasenko V. F. Generation of streamers in an inhomogeneous electric field under low air pressure. // Optika Atmosfery i Okeana. 2022. V. 35. No. 09. P. 777–781. DOI: 10.15372/AOO20220911 [in Russian].
Copy the reference to clipboard


The conditions for generation of red streamers at an atmospheric air pressure of 0.1–10 Torr are experimentally studied. The mode of generation of streamers tens of centimeters in length from the plasma of an electrodeless capacitive discharge is implemented under low pressures. A discharge between metal small-curvature electrodes transforms into a stationary mode, where streamers are not generated, as the pressure and voltage increase. It was confirmed using the ICCD camera that the streamers start from the positive-polarity electrode. The color of the discharge plasma depends on the air pressure in pulsed and continuous discharges and is most consistent with the color of red sprites at a pressure of ~ 1 Torr.


discharge in low-pressure atmospheric air, sprite modeling, tip-to-point gap, capacitive discharge, red streamer


  1. Hampton D.L., Heavner M.J., Wescott E.M., Sentman D.D. Optical spectral characteristics of sprites // Geophys. Res. Lett. 1996. V. 23, N 1. P. 89–92.
  2. Armstrong R.A., Suszcynsky D.M., Lyons W.A., Nelson T.E. Multi-color photometric measurements of ionization and energies in sprites // Geophys. Res. Lett. 2000. V. 27, N 5. P. 653–656.
  3. Pasko V.P. Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges // Plasma Sources Sci. Technol. 2007. V. 16. P. S13. DOI: 10.1088/0963-0252/16/ 1/S02.
  4. Williams E., Kuo C.L., Bór J., Sátori G., Newsome R., Adachi T., Boldi R., Chen A., Downes E., Hsu R.R., Lyons W. Resolution of the sprite polarity paradox: The role of halos // Radio Sci. 2012. V. 47. P. RS2002. DOI: 10.1029/2011RS004794.
  5. Williams E.R. Sprites, elves and glow discharge tubes // Phys. Today. 2001. V. 54, N 11. P. 41–47.
  6. Opaits D.F., Shneider M.N., Howard P.J., Miles R.B., Milikh G.M. Analysis of UV flashes of millisecond scale detected by a low-orbit satellite // Geophys. Res. Lett. 2010. V. 37. P. L14801. DOI: 10.1029/ 2010GL043996.
  7. Parra-Rojas F.C., Passas M., Carrasco E., Luque A., Tanarro I., Simek M., Gordillo-Vázquez F.J. Spectroscopic diagnostics of laboratory air plasmas as a benchmark for spectral rotational (gas) temperature determination in TLEs // J. Geophys. Res.: Space Phys. 2013. V. 118. P. 4649–4661. DOI: 10.1002/jgra.50433, 2013.
  8. Pasko V.P., Yair Y., Kuo C.L. Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects // Space Sci. Rev. 2012. V. 168, N 1. P. 475–516. DOI: 10.1007/s11214-011-9813-9.
  9. Huang A., Lu G., Yue J., Lyons W., Lucena F., Lyu F., Cummer S.A., Zhang W., Xu L., Xue X., Xu S. Observations of red sprites above Hurricane Matthew // Geophys. Res. Lett. 2018. V. 45. N 13. P. 158–165. DOI: 10.1029/2018GL079576.
  10. Neubert T., Østgaard N., Reglero V., Blanc E., Chan­rion O., Oxborrow C.A., Orr A., Tacconi M., Hartnack O., Bhanderi D.D. The ASIM mission on the international space station // Space Sci. Rev. 2019. V. 215, N 2. P. 1–17. DOI: 10.1007/s11214-019-0592-z.
  11. Qin J., Celestin S., Pasko V.P., Cummer S.A., McHarg M.G., StenbaekNielsen H.C. Mechanism of column and carrot sprites derived from optical and radio observations // Geophys. Res. Lett. 2013. V. 40. N 17. P. 4777–4782.
  12.  Sprites, elves and intense lightning discharges / M. Füllekrug, E.A. Mareev, M.J. Rycroft. (eds.). Netherlands: Springer Science & Business Media, 2006. V. 225.
  13. Zabotin N.A., Wright J.W. Role of meteoric dust in sprite formation // Geophys. Res. Lett. 2001. V. 28, N 13. P. 2593–2596.
  14. Tarasenko V., Vinogradov N., Beloplotov D., Burachenko A., Lomaev M., Sorokin D. Influence of nanoparticles and metal vapors on the color of laboratory and atmospheric discharges // Nanomaterials. 2022. V. 12, N 4. P. 652. DOI: 10.3390/nano12040652.
  15. Sosnin E.A., Babaeva N.Yu., Kozyrev A.V., Kozhevnikov V.Yu., Naidis G.V., Skakun V.S., Panarin V.A., Tarasenko V.F. Modeling of transient luminous events in Earth's middle atmosphere with apokamp discharge // Phys. Usp. 2021. V. 64, iss. 2. P. 191–210. DOI: 10.3367/UFNe.2020.03.038735.
  16. Briels T.M.P., van Veldhuizen E.M., Ebert U. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy // J. Phys. D: Appl. Phys. 2008. V. 41, N 23. P. 234008. DOI: 10.1088/ 0022-3727/41/23/234008.