Vol. 35, issue 09, article # 1

Minin I. V., Song Zhou ., Minin O. V. Superresonance effect in a mesoscale sphere with a low refractive index. // Optika Atmosfery i Okeana. 2022. V. 35. No. 09. P. 697–703. DOI: 10.15372/AOO20220901 [in Russian].
Copy the reference to clipboard

Abstract:

The results of numerical simulation based on the Mie theory of the superresonance effect in a dielectric sphere with a low refractive index are presented. Water was used as the material of the mesoscale sphere. It is shown that not only the previously studied weakly dissipative mesoscale spheres made of a material with “medium” (~ 1.5) and high (> 2) refractive indices, but also with a low one (~ 1.3) support the high-order Fano resonance effect associated with internal Mie modes. In this case, the intensities of resonant peaks for both magnetic and electric fields can attain extremely high values on the order of 106–107 in the vicinity of the poles of a water droplet with a Mie size parameter of ~ 70.

Keywords:

Mie theory, high-order Fano resonance, mesoscale spherical particle, extreme high electromagnetic fields

References:

  1. Luk’yanchuk B., Paniagua-Domınguez R., Minin I.V., Minin O.V., Wang Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow // Opt. Mat. Express. 2017. V. 7, N 6. P. 1820–1847.
  2. Minin O.V., Minin I.V. Optical phenomena in mesoscale dielectric particles // Photonics. 2021. V. 8, N 12.
  3. Luk’yanchuk B., Bekirov A., Wang Z., Minin I.V., Minin O.V., Fedyanin A. Optical phenomena in dielectric spheres with the size of several light wavelength (Review) // Phys. Wave Phenom. 2022. V.30. N.4. P. 217–241.
  4. Keen B., Porter A. On the diffraction of light by particles comparable with the wave-length // Roy. Soc. Proc. A. 1913. V. 89. P. 370.
  5. Yue L., Yan B., Monks J., Wang Z., Minin I.V., Minin O.V. Loss impact on super resolution photonic jet produced by a Teflon sphere // Proc. Progress in Electromagnetics Research Symposium, St Petersburg, 22–25 May 2017, Russia. 2017. P. 1377.
  6. Wang Z., Luk’yanchuk B., Yue L., Yan B., Monks J., Dhama R., Minin O.V., Minin I.V., Huang S., Fedyanin A. High order Fano resonances and giant magnetic fields in dielectric microspheres // Sci. Rep. 2019. V. 9. P. 20293.
  7. Yue L., Yan B., Monks J., Dhama R., Jiang C., Minin O.V., Minin I.V., Wang Z. Full three-dimensional Poynting vector flow analysis of great field-intensity enhancement in specifically sized spherical-particles // Sci. Rep. 2019. V. 9. P. 20224.
  8. Yue L., Wang Z., Yan B., Monks J., Joya Y., Dhama R., Minin O.V., Minin I.V. Super-enhancement focusing of teflon spheres // Ann. Phys. 2020. V. 532. P. 2000373.
  9. Kolwas M. Scattering of light on droplets and spherical objects: 100 years of Mie scattering // Comp. Meth. Sci. Tech. 2010. V. 2. P. 107–113.
  10. Penndorf R. Mie scattering coefficient for water droplets in air // J. Metrology. 1956. V. 13. P. 219.
  11. Glantschnig W., Chen S. Light scattering from water droplets in the geometrical optics approximation // Appl. Opt. 1981. V. 20. P. 2499–2509.
  12. Laven P. Time domain analysis of scattering by a water droplet // Appl. Opt. 2011. V. 50, N 28. P. F29.
  13. Lock J., Woodruff J. Non-Debye enhancements in the Mie scattering of light from a single water droplet // Appl. Opt. 1989. V. 28, N 3. P. 523.
  14. Hale G., Querry M. Optical constants of water in the 200-nm to 200-mm wavelength region // Appl. Opt. 1973. V. 12. P. 555–563.
  15. Hoang T., Duan Y., Chen X., Barbastathis G. Focusing and imaging in microsphere-based microscopy // Opt. Express. 2015. V. 23. P. 12337–12353.
  16. Kong X., Xiao G. Fano resonance in high-permittivity dielectric spheres // J. Opt. Soc. Am. A. 2016. V. 33. P. 707–711.
  17. Fano U. Effects of configuration interaction on intensities and phase shifts // Phys. Rev. 1961. V. 124. P. 1866–1878.
  18. Conwell P., Barber P., Rushforth C. Resonant spectra of dielectric spheres // J. Opt. Soc. Am. A. 1984. V. 1, N 1. P. 62.
  19. Tribelsky M., Miroshnichenko A. Giant in-particle field concentration and Fano resonances at light scattering by high-refractive index particles // Phys. Rev. A. 2016. V. 93. P. 053837.
  20. Luk’yanchuk B., Miroshnichenko A., Kivshar Y. Fano resonances and topological optics: an interplay of far- and near-field interference phenomena // J. Opt. 2013. V. 15. P. 073001.
  21. Mie G. Beiträge zur Optik trüber Medien speziell kolloidaler Goldlösungen (Сontributions to the optics of diffuse media, especially colloid metal solutions) // Ann. Phys. 1908. V. 25. P. 377–445.
  22. Gouesbet G., Gréhan G. Generalized Lorenz-Mie Theories. Berlin: Springer, 2011. 360 p.
  23. Kerker M. The Scattering of Light and Other Electromagnetic Radiation. Berlin: Elsevier, 2013. 121 p.
  24. Bohren C., Huffman D. Absorption and Scattering of Light by Small Particles. Berlin: Wiley, 1998.
  25. Minin I.V., Zhou S., Minin O.V. Super-resonance effect for high-index sphere immersed in water // arXiv:2205.03863 (May 8). 2022.
  26. Minin I.V., Minin O.V., Zhou S. Osobennosti generatsii ekstremal'nyh elektromagnitnyh polej v dielektricheskoj mezorazmernoj sfere s uchetom okruzhayushchej sredy // Pis'ma v ZhTF. 2022. V. 48, iss. 18. P. 41–44.
  27. Green E. The story of Q // Am. Scientist. 1955. V. 43. P. 584–594.
  28. Houston W.V. A compound interferometer for fine structure work // Phys. Rev. 1927. V. 29. P. 0478–0484.
  29. Chýlek P., Jarzembski M., Srivastava V., Pinnick R., Pendleton J., Cruncleton J. Effect of spherical particles on laser-induced breakdown of gases // Appl. Opt. 1987. V. 26. P. 760–762.
  30. Tzarouchis D., Sihvola A. Light scattering by a dialectric sphere: Perspectives on the Mie resonances // Appl. Sci. 2018. V. 8. P. 184.
  31. Minin O.V., Minin I.V. Unusual optical effects in dielectric mesoscale particles // Proc. SPIE. 2022. N 121930E. DOI: 10.117/12.2634315.
  32. Vasnetsov M.V., Staliunas K. Optical Vortices. V. 228, Commack, New York: Nova Science Publishers, 1999. 279 p.
  33. Berry M.V. Superoscillations and leaky spectra // J. Phys. A Math. Theor. 2018. V. 52. P. 015202.
  34. Berry M., Zheludev N., Aharonov Y., Colombo F., Sabadini I., Struppa D., Tollaksen J., Rogers E., Qin F., Hong M., Luo X., Remez R., Arie A., Götte J., Dennis M., Wong A., Eleftheriades G., Eliezer Y., Bahabad A., Chen G., Wen Z., Liang G., Hao C., Qiu C., Kempf A., Katzav E., Schwartz M. Roadmap on superoscillations // J. Opt. 2019. V. 21. P. 053002.
  35. Zheludev N., Yuan G. Optical superoscillation technologies beyond the diffraction limit // Nature Rev. Phys. 2021. V. 4. P. 16.
  36. Yuan G., Rogers E., Zheludev N. “Plasmonics” in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields // Light: Sci. Applicat. 2019. V. 8. DOI: 10.1038/s41377- 018-0112-z.
  37. Schuller J., Barnard E., Cai W., Jun Y., White J., Brongersma M. Plasmonics for extreme light concentration and manipulation // Nat. Mater. 2010. V. 9. P. 193.
  38. Cao S, Xing Y, Sun Y, Liu Z, He S. Strong coupling between a single quantum emitter and a plasmonic nanoantenna on a metallic film // Nanomaterials. 2022. V. 12. P. 1440.
  39. Hsu L., Baida F., Ndao A. Local field enhancement using a photonic-plasmonic nanostructure // Opt. Express. 2021. V. 29. P. 1102–1108.
  40. Chýlek P., Jarzembski M., Srivastava V., Pinnick R., Pendleton J., Cruncleton J. Effect of spherical particles on laser-induced breakdown of gases // Appl. Opt. 1987. V. 26. P. 760–762.
  41. Schnürer M., Hilscher D., Jahnke U., Ter-Avetisyan S., Busch S., Kalachnikov M., Stiel H., Nickles P., Sandner W. Explosion characteristics of intense femtosecond-laser-driven water droplets // Phys. Rev. E. 2004. V. 70. P. 056401.
  42. Lindinger A., Hagen J., Socaciu L., Bernhardt M., Wöste L., Duft D., Leisner T. Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses // Appl. Opt. 2004. V. 43. P. 5263.
  43. Apeksimov D.V., Bukin O.A., Bykova E.E., Geints Yu.E., Golik S.S., Zemlyanov A.A., Zemlyanov Al.A., Ilyin A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K., Sokolova E.B. Vzaimodejstvie gigavattnyh lazernyh impul'sov s zhidkimi sredami. Part 1. Vzryvnoe vskipanie krupnyh izolirovannyh vodnyh kapel' // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 536–542; Apeksimov D.V., Bukin O.A., Bykova E.E., Geints Yu.E., Golik S.S., Zemlyanov A.A., Zemlyanov Al.A., Ilyin A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K., Sokolova E.B. Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 448–454.
  44. Geints Yu.E., Zemlyanov A.A. Fazovyj vzryv vodnoj kapli femtosekundnym lazernym impul'som: I. Dinamika opticheskogo proboya // Optika atmosf. i okeana. 2009. V. 22, N 8. P. 725–733; Geints Y., Zemlyanov A. Phase explosion of a water drop by a femtosecond laser pulse: I. Dynamics of optical breakdown // Atmos. Ocean. Opt. 2009. V. 22, N 6. P. 581–589.
  45. Minin V.F. Vzaimodejstvie podvodnoj udarnoj volny s puzyr'kovoj zavesoj: dis. ... kand. tekhn. nauk. Novosibirsk, 1961. P. 106–107.
  46. Zhang J., Chang R. Shape distortion of a single water droplet by laser-induced electrostriction // Opt. Lett. 1988. V. 13. P. 916–918.
  47. Minin I.V., Minin O.V., Luk'yanchuk B.S. Mesotronic era of dielectric photonics // Proc. SPIE. 2022. N 121520D. DOI: 10.1117/12.2634133.
  48. Trigub M.V., Torgaev S.N., Evtushenko G.S., Troitskij V.O., Shiyanov D.V. Bistaticheskij lazernyj monitor // Pis'ma v ZhTF. 2016. V. 42, iss. 12. P. 51–56.
  49. Trigub M.V., Platonov V.V., Evtusheko G.S., Osipov V.V., Evtusheko T.G. Laser monitors for high speed imaging of materials modification and production // Vacuum. 2017. V. 143. P. 486–490.
  50. Trigub M.V., Agapov N.A., Evtushenko G.S., Gubarev F.A. A computational algorithm for designing an active optical system with an image intensifier // Rus. Phys. J. 2013. V. 56, N 5. P. 588–591.
  51. Trigub M.V., Platonov V.V., Fedorov K.V., Evtushenko G.S., Osipov V.V. CuBr-lazer v zadachah vizualizatsii protsessov polucheniya nanomaterialov // Optika atmosf. i okeana. 2016. V. 29, N 3. P. 249–253; Trigub M.V., Platonov V.V., Fedorov K.V., Evtushenko G.S., Osipov V.V. CuBr laser for nanopowder production visualization // Atmos. Ocean. Opt. 2016. V. 29, N 4. P. 376–380.
  52. Wang W., Ma X. Achieving extreme light confinement in low-index dielectric resonators through quasi-bound states in the continuum // Opt. Lett. 2021. V. 46. P. 6087–6090.
  53. Minin O.V., Minin I.V., Zhou S. The super resonance effect paves the way for a new type of refractive index sensor concept based on a mesoscale dielectric sphere // arXiv:2204.09175 (April 20). 2022.