Vol. 35, issue 08, article # 3

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I., Safyanov A. D. Laser-induced fluorescence of PO-photofragments of organophosphates. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 613–618. DOI: 10.15372/AOO20220803 [in Russian].
Copy the reference to clipboard


Results of calculating the spectrum of phosphorus monoxide (PO) fluorescence bands are presented. It is shown that the use of excitation radiation with wavelengths near the bandheads of the (P22 + Q12) and P12 branches of the A2Σ+ (ν´ = 0) - X2Π3/2 (v´´ = 0) band provides a spectral separation of the γ (0, 1) PO fluorescence band and the vibrational-rotational Raman spectrum of oxygen. The spectra of the γ (0, 1) fluorescence band of PO fragments of dimethylmethylphosphonate and the vibrational-rotational band of spontaneous Raman scattering on atmospheric oxygen molecules were experimentally obtained under exposure to KrF-laser radiation at a wavelength of 247.78 nm. It is shown that the results of calculations of the shape and position of the fluorescence spectra are in good agreement with the experimental data.


organophosphates, laser fragmentation, phosphorus oxide, PO-fragment, laser-induced fluorescence


  1. Rodgers M.O., Asai K., Davis D.D. Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases // Appl. Opt. 1980. V. 19, N 21. P. 3597–3605.
  2. Galloway D.B., Bartz J.A., Huey L.G., Crim F.F. Pathways and kinetic energy disposal in the photodissociation of nitrobenzene // J. Chem. Phys. 1993. V. 98, N 3. P. 2107–2114.
  3. Lemire G.W., Simeonsson J.B., Sausa R.C. Monitoring of vapor-phase nitro compounds using 226-nm radiation: Fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection // Anal. Chem. 1993. V. 65, N 5. P. 529–533.
  4. Galloway D.B., Glenewinkel-Meyer T., Bartz J.A., Huey L.G., Crim F.F. The kinetic and internal energy of NO from the photodissociation of nitrobenzene // J. Chem. Phys. 1994. V. 100, N 3. P. 1946–1952.
  5. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003.
  6. Simeonsson J.B., Sausa R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis // Appl. Spectrosc. Rev. 1996. V. 31, N 1. P. 1–72.
  7. Swayambunathan V., Singh G., Sausa R.C. Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials // Appl. Opt. 1999. V. 38, N 30. P. 6447–6454.
  8. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0 - 3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64.
  9. Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710.
  10. Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
  11. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672.
  12. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
  13. Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204, N 1–6. P. 327–331.
  14. Wynn C.M., Palmacci S., Kunz R.R., Zayhowski J.J., Edwards B., Rothschild M. Experimental demonstration of remote optical detection of trace explosives // Proc. SPIE. 2008. V. 6954. P.695407–8.
  15. Arusi-Parpar T., Fastig S., Shapira J., Shwartzman B., Rubin D., Ben-Hamo Y., Englander A. Standoff detection of explosives in open environment using enhanced photodissociation fluorescence // Proc. SPIE. 2010. V. 7684. P. 76840L–7.
  16. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
  17. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
  18. Bobrovnikov S.M., Gorlov E.V. Lidarnyj metod obnaruzheniya parov vzryvchatyh veshchestv v atmosfere // Optika atmosf. i okeana. 2010. V. 23. N 12. P. 1055–1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean Opt. 2011. V. 24, N 3. P. 235–241.
  19. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Two-pulse laser fragmentation/laserinduced fluorescence of nitrobenzene and nitrotoluene vapors // Appl. Opt. 2019. V. 58, N 27. P. 7497–7502.
  20. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Evaluation of limiting sensitivity of the one-color laser fragmentation/laser-induced fluorescence method in detection of nitrobenzene and nitrotoluene vapors in the atmosphere // Atmosphere. 2019. V. 10, N 11, 692. P. 1–11.
  21. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Dynamics of the laser fragmentation/laserinduced fluorescence process in nitrobenzene vapors // Appl. Opt. 2018. V. 57, N 31. P. 9381–9387.
  22. Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510.
  23. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7.
  24. Yang L., Shroll R.M., Zhang J., Lourderaj U., Hase W.L. Theoretical investigation of mechanisms for the gas-phase unimolecular decomposition of DMMP // J. Phys. Chem. A. 2009. V. 113, N 49. P. 13762–13771.
  25. Gutsev G.L., Boateng D.A., Jena P., Tibbetts K.M. A theoretical and mass spectrometry study of dimethyl methylphosphonate: New isomers and cation decay channels in an intense femtosecond laser field // J. Phys. Chem. A. 2017. V. 121, N 44. P. 8414–8424.
  26. Douglas K.M., Blitz M.A., Mangan T.P., Plane J.M.C. Experimental study of the removal of ground- and excited-state phosphorus atoms by atmospherically relevant species // J. Phys. Chem. A 2019. V. 123. P. 9469–9478.
  27. Douglas K.M., Blitz M.A., Mangan T.P., Westernand C.M., Plane J.M.C. Kinetic study of the reactions PO + O2 and PO2 + O3 and spectroscopy of the PO radical // J. Phys. Chem. A. 2020. V. 124, N 39. P. 7911–7926.
  28. Henshaw T.L., MacDonald M.A., Stedman D.H., Coombe R.D. The P(4Su) + N3(2Πg) reaction: Chemical generation of a new metastable state of PN // J. Phys. Chem. 1987. V. 91, N 11. P. 2838–2842.
  29. Acuna A.U., Husain D., Wiesenfeld J.R. Kinetic study of electronically excited phosphorus atoms, P(32DJ, 32PJ), by atomic absorption spectroscopy // J. Chem. Phys. 1973. V. 58, N 2. P. 494–499.
  30. Atomic Spectra Database (ver. 5.9) // NIST. Gaithersburg, 2022. URL: https://physics.nist.gov/asd. DOI: 10.18434/ T4W30F.
  31. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Effektivnost' lazernogo vozbuzhdeniya PO-fotofragmentov organofosfatov // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 175–185; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Efficiency of laser excitation of PO photofragments of organophosphates // Atmos. Ocean Opt. 2022/ V. 35, N 4. P. 329–340.
  32. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Otsenka effektivnosti lazernogo vozbuzhdeniya perekhoda B2Σ+ (vʹ = 0) - X2Π (v´´ = 0) oksida fosfora // Optika atmosf. i okeana. 2022. V. 35, N 5. P. 361–368.
  33. Panchenko Y., Puchikin A., Yampolskaya S., Bobrovnikov S., Gorlov E., Zharkov V. Narrowband KrF laser for lidar systems // IEEE J. Quantum Electron. 2021. V. 57, N 2. P. 1–5.
  34. Butrow A.B., Buchanan J.H., Tevault D.E. Vapor pressure of organophosphorus nerve agent simulant compounds // Chem. Eng. Data. 2009. V. 54, N 6. P. 1876–1883.