Vol. 35, issue 08, article # 11

Chubarova N. E., Rozental V. A., Zhdanova E. Yu., Poliukhov A. A. New radiation complex at the Moscow State University Meteorological Observatory of the BSRN standard: methodological aspects and first measurement results. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 670–678. DOI: 10.15372/AOO20220811 [in Russian].
Copy the reference to clipboard


The operational features of the new RAD-MSU(BSRN) robotic radiation complex, mounted at the MSU Meteorological Observatory in 2021, are discussed. Though the RAD-MSU(BSRN) complex is not a part of BSRN (Baseline Surface Radiation Network), it is equipped with a full set of instruments recommended by the BSRN, including for measurements of all components of net radiation, UVA radiation, erythemal UV radiation, and sunshine duration. The specially developed software for visualization and processing of measurement data, including evaluation of data quality criteria, is described. The main features of variability of the components of net radiation and UV radiation in 2021 are analyzed.


net radiation, BSRN measurement complex, ultraviolet radiation, UV index, monitoring, short-wave and long-wave radiation


  1. Chylek P., Lohmann U., Dube M., Mishchenko M., Kahn R., Ohmura A. Limits on climate sensitivity derived from recent satellite and surface observations // J. Geophys. Res. 2007. V. 112. P. D24S04.
  2. Wild M., Folini D., Schär C., Loeb N., Dutton E.G., König-Langlo G. The global energy balance from a surface perspective // Clim. Dynam. 2013. V. 40, N 11. P. 3107–3134.
  3. Wild M., Ohmura A., Schär C., Müller G., Folini D., Schwarz M., Hakuba M.Z., Sanchez-Lorenzo A. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes // Earth Syst. Sci. Data. 2017. V. 9, N 2. P. 601–613.
  4. McArthur L.J.B. World Climate Research Programme-Baseline Surface Radiation Network (BSRN)-Operations Manual Version 2.1. WCRP-121. WMO/TD-No. 1274. Canada: Experimental Studies Division, 2005. 176 p.
  5. Driemel A., Augustine J., Behrens K., Colle S., Cox C., Cuevas-Agulló E., Denn F., Duprat T., Fukuda M., Grobe H., Haeffelin M., Hodges G., Hyett N., Ijima O., Kallis A., Kna W., Kustov V., Long C., Longenec­ker D., Lupi A., Maturilli M., Mimouni M., Ntsangwane L., Ogihara H., Olano X., Olefs M., Omori M., Passamani L., Pereira E.B., Schmithüsen H., Schumacher S., Sieger R., Tamlyn J., Vogt R., Vuilleumier L., Xia X., Ohmura A., König-Langlo G. Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017) // Earth Syst. Sci. Data. 2018. V. 10, N 3. P. 1491–1501.
  6. Lanconelli C., Busetto M., Dutton E.G., König-Langlo G., Maturilli M., Sieger R., Vitale V., Yamanouchi T. Polar baseline surface radiation measurements during the International Polar Year 2007–2009 // Earth Syst. Sci. Data. 2011. V. 3, N 1. P. 1–8.
  7. Pinker R.T., Zhang B., Dutton E.G. Do satellites detect trends in surface solar radiation? // Science. 2005. V. 308, N 5723. P. 850–854.
  8. Long C.N., Dutton E.G., Augustine J.A., Wiscombe W., Wild M., McFarlane S.A., Flynn C.J. Significant decadal brightening of downwelling shortwave in the continental US // J. Geophys. Res. 2009. V. 114. P. D00D06.
  9. Volpert E.V., Chubarova N.E. Long-term changes in solar radiation in Northern Eurasia during the warm season according to measurements and reconstruction model // Russ. Meteorol. Hydrol. 2021. V. 46, N 8. P. 507–518.
  10. Nastavlenie gidrometeostantsiyam i postam. M.: Federal'naya sluzhba Russia po gidrometeorologii i monitoringu okruzhayushchej sredy, 1997. Iss. 5, part 1. 221 p.
  11. Ohmura A., Dutton E.G., Forgan B., Fröhlich C., Gilgen H., Hegner H., Heimo A., König-Langlo G., McArthur B., Müller G., Philipona R., Pinker R., Whitlock C.H., Dehne K., Wild M. Baseline surface radiation network (BSRN/WCRP): New precision radiometry for climate research // B. Am. Meteorol. Soc. 1998. V. 79, N 10. P. 2115–2136.
  12. Chubarova N.Y., Nezval Y.I., Verdebout J., Krotkov N., Herman J. Long-term UV irradiance changes over Moscow and comparisons with UV estimates from TOMS and METEOSAT // Proc. SPIE. 2005. V. 5886. P. 63–73.
  13. Chubarova N., Yurova A., Krotkov N., Herman J., Bhartia P.K. Comparisons between ground measurements of broadband UV irradiance (300–380 nm) and TOMS UV estimates at Moscow for 1979–2000 // Opt. Engin. 2002. V. 41, N 12. P. 3070–3081.
  14. Chubarova N.E., Rublev A.N., Trotsenko A.N., Trembach V.V. Vychislenie potokov solnechnogo izlucheniya i sravnenie s rezul'tatami nazemnyh izmerenij v bezoblachnoj atmosfere // Izv. RAN. Fiz. atmosf. i okeana. 1999. V. 35, N 2. P. 222–239.
  15. Long C.N., Shi Y. An automated quality assessment and control algorithm for surface radiation measurements // Open Atmos. Sci. J. 2008. V. 2, N 1. P. 23–37.
  16. Dutton E.G., Michalsky J.J., Stoffel T., Forgan B.W., Hickey J., Nelson D.W., Alberta T.L., Reda I. Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors // J. Atmos. Ocean. Tech. 2001. V. 18, N 3. P. 297–314.
  17. Michalsky J., Kutchenreiter M., Long C.N. Significant Improvements in Pyranometer Offsets Using Ventilation Strategies // J. AOTech. 2017. V. 34, N 6. P. 1323–1332.
  18. Abakumova G.M., Nezval' E.I., Shilovtseva O.A. Vliyanie kuchevoj oblachnosti na rasseyannuyu i summarnuyu ul'trafioletovuyu, fotosinteticheski aktivnuyu i integral'nuyu solnechnuyu radiatsiyu // Meteorol. i gidrol. 2002. N 7. P. 29–40.
  19. Fitzpatrick T.B. The validity and practicality of sun-reactive skin types I through VI // Arch. Dermatol. 1988. V. 124, N 6. P. 869–871.