Vol. 35, issue 05, article # 3

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I., Murashko S. N. Estimation of the efficiency of laser excitation of the B2Σ+ (v´ = 0) - X2Π (v´´ = 0) transition of phosphorus oxide. // Optika Atmosfery i Okeana. 2022. V. 35. No. 05. P. 361–368. DOI: 10.15372/AOO20220503 [in Russian].
Copy the reference to clipboard

Abstract:

We present the results of calculating the vibrational and rotational terms of the X2Π and B2Σ+ electronic states of the phosphorus oxide (PO) molecule. The absorption spectrum corresponding to the electronic transition B2Σ+ (v´ = 0) - X2Π (v´´ = 0) has been calculated. The efficiency of laser excitation of PO molecules is estimated as a function of the spectral parameters of the radiation. It has been established that the excitation efficiency of the B2Σ+ (v´ = 0) - X2Π (v´´ = 0) electronic transition of the PO molecule is approximately an order of magnitude lower than that of the A2Σ+ (v´ = 0) - X2Π (v´´ = 0) transition. The result is of practical importance from the point of view of choosing the optimal scheme for laser excitation of the fluorescence of PO-fragments in the implementation of the method of remote detection of organophosphates.

Keywords:

phosphorus oxide, PO-fragments, absorption spectrum, laser excitation, thermalization, organophosphates

References:

1. Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
2. Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510.
3. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7.
4. Moussaoui Y., Ouamerali O., De Maré G.R. Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: Comparison of theoretical and experimental data // Int. Rev. Phys. Chem. 2003. V. 22, N 4. P. 641–675.
5. Liu H., Shi D., Sun J., Zhu Z. Accurate potential energy curves and spectroscopic properties of the 27 L-S states and 73 W states of the PO radical // Mol. Phys. 2017. V. 115, N 6. P. 714–730.
6. Yin Y., Shi D., Sun J., Zhu Z. Transition probabilities of emissions and rotationless radiative lifetimes of vibrational levels for the PO radical // Astrophys. J. Suppl. Ser. 2018. V. 236, N 34. P. 1–15.
7. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Effektivnost' lazernogo vozbuzhdeniya PO-fotofragmentov organofosfatov // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 175–185.
8. Singh N.L. Rotational analysis of the b bands of phosphorus monoxide // Can. J. Phys. 1959. V. 37, N 2. P. 136–143.
9. Mohanty B.S., Upadhya K.N., Singh R.B., Singh N.L. On the b-band system of the PO molecule // J. Mol. Spectrosc. 1967. V. 24, N 1–4. P. 19–37.
10. Mohanty B.S., Rai D.K. Upadhya K.N. Structure and analysis of some bands of the b-system of PO molecule // Proc. Indian Acad. Sci. Sect. A. 1969. V. 68, N 4. P. 165–172.
11. Dixit M.N., Narasimham N.A. Isotope shift studies of the ultra-violet and visible bands of P16O and P18O // Proc. Indian Acad. Sci. Sect. A. 1969. V. 68, N 1. P. 1–12.
12. Smyth K.C., Mallard W.G. Two-photon ionization processes of PO in a C2H2/air flame // J. Chem. Phys. 1982. V. 77, N 4. P. 1779–1787.
13. Anderson W.R., Bunte S.W., Kotlar A.J. Measurement of Franck–Condon, factors for the v¢=0 progression in the B-X system of PO // Chem. Phys. Lett. 1984. V. 110, N 2. P. 145–149.
14. Wong K.N., Anderson W.R., Kotlar A.J., De Wilde M.A., Decker L.J. Lifetimes and quenching of B2S+ PO by atmospheric gases // J. Chem. Phys. 1986. V. 84, N 1. 81–90.
15. Wong K.N., Anderson W.R., Kotlar A.J. Radiative processes following laser excitation of the A2S+ state of PO // J. Chem. Phys. 1986. V. 85, N 5. 2406–2413.
16. Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okrussb M. Determination of phosphorus by molecular absorption of phosphorus monoxide using a high-resolution continuum source absorption spectrometer and an air–acetylene flame // J. Anal. At. Spectrom. 2006. V. 21, N 3. P. 338–345.
17. Prajapat L., Jagoda P., Lodi L., Gorman M.N., Yurchenko S.N., Tennyson J. ExoMol molecular line lists – XXIII. Spectra of PO and PS // Mon. Not. Roy. Astron. Soc. 2017. V. 472, N 3. P. 3648–3658.
18. Huber K.P., Herzberg G.H. Constants of Diatomic Molecules // NIST Chemistry WebBook. NIST Standard Reference Database Number 69, 2022. DOI: 10.18434/T40303.
19. Sausa R.C., Miziolek A.W., Long S.R. State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate // J. Phys. Chem. 1986. V. 90, N 17. P. 3994–3998.
20. Bobrovnikov S.M., Gorlov E.V. Zharkov V.I. Otsenka effektivnosti lazernogo vozbuzhdeniya molekul oksida fosfora // Optika atmosf. i okeana. 2021. V. 34, N 4. P. 302–311; Bobrovnikov S.M., Gorlov E.V. Zharkov V.I. Estimation of the efficiency of laser excitation of phosphorus oxide molecules // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 302–312.
21. Edlen B. The refractive index of air // Metrologia. 1966. V. 2, N 2. P. 12–80.
22. Bobrovnikov S.M., Gorlov E.V. Lidarnyj metod obnaruzheniya parov vzryvchatyh veshchestv v atmosfere // Optika atmosf. i okeana. 2010. V. 23, N 12. P. 1055–1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean Opt. 2011. V. 24, N 3. P. 235–241.