Vol. 35, issue 01, article # 9

Belov V. V., Poznaharev E. S., Tarasenkov M. V., Fedosov A. V. Non-coplanar bistatic optical communication systems. Field and laboratory experiments. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. . DOI: 10.15372/AOO20220109 [in Russian].
Copy the reference to clipboard

Abstract:

Results of field and laboratory experiments on non-line-of-sight communication under water and in a model air medium are considered. For the first time, the experiments have been performed for non-coplanar communication schemes of the first (when single scattered radiation was present in the information-bearing signal) and second type (when this radiation was absent). The feasibi­lity of communication through an ice interface with an underwater source was confirmed. It was shown that transition from the coplanar to non-coplanar communication scheme, accompanied by changes in the angles defining mutual orientation of the optical transmitter and receiver axes, can cause nonlinear changes in communication errors. The explanation of this dependence is suggested.

Keywords:

optical communication on scattered laser radiation, field and laboratory experiments

Figures:

References:

1. Sunstein D.E. A Scatter Communication Link at Ultraviolet Frequencies: thesis. USA: Massachusetts Institute of technology, 1968.
2. Garg K.K., Shaik P., Bhatia V. Performance analysis of cooperative relaying technique for non-line-of-sight UV communication system in the presence of turbulence // Opt. Eng. 2020. V. 59, N 1. P. 1–16.
3. Luo P., Zhang M., Han D., Li Q. Performance ana­lysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters // Opt. Express. 2012. V. 20. P. 23489–23501.
4. Peng D., Shi J., Peng G., Xia Sh., Xu Sh., Wang Sh., Liu F. An ultraviolet laser communication system using frequency-shift keying modulation scheme // Optoelectron. Lett. 2015. V. 11. P. 65–68.
5. Hariq S.H., Odabasioglu N. Spatial diversity techni­ques for non-line-of-sight ultraviolet communication systems over atmospheric turbulence channels // IET Optoelectron. 2020. V. 14, N 13. P. 327–336.
6. Xing F., Yin H., Ji X., Leung V.C.M. Joint relay selection and power allocation for underwater cooperate-ve optical wireless networks // IEEE Trans. Wireless Commun. 2020. V. 19, N 1. P. 251–264.
7. Arya S., Chung Y.H. A unified statistical model for Malaga distributed optical scattering communications // Opt. Commun. 2020. V. 463. P. 125402.
8. Belov V.V., Tarasenkov M.V., Abramochkin V.N. Bistaticheskie atmosfernye optiko-elektronnye sistemy svyazi (polevye eksperimenty) // Pis'ma v ZhTF. 2014. V. 40, iss. 19. P. 89–95.
9. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Gridnev Yu.V., Troitskii V.O., Dimaki V.A. Atmosfernye bistaticheskie kanaly svyazi s rasseyaniem. Part 2. Polevye eksperimenty 2013 year // Optika atmosf. i okeana. 2014. V. 27. N 8. С. 659–664; Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Gridnev Yu.V., Troitskii V.O., Dimaki V.A. Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013 // Atmos. Ocean. Opt. 2015. V. 28, N 3. Р. 202–209.
10. Belov V.V., Tarasenkov M.V., Fedosov A.V., Kudryavtsev A.N., Abramochkin V.N., Poznaharev E.S. Lazernoe ustrojstvo dlya izmereniya koeffitsienta oslableniya vodnoj sredy // Patent na poleznuyu model' N 193689, prioritet ot 11.11.2019 year. Data gosudarstvennoj registratsii 16.09.2019. Pravoobladatel': IOA SO RAN (RU).
11. Song Peng, Tan Yumei, Geng Xiaojun, Zhao Taifei. Noise reduction on received signals in wireless ultraviolet communications using wavelet transform // IEEE Access. 2020. V. 8. P. 131626–131635.
12. Renzhi Yuan, Jianshe Ma, Ping Su, Yuhan Dong, Julian Cheng. Monte-Carlo integration models for multiple scattering based optical wireless communication // IEEE Trans. Commun. 2020. V. 68, N 1. P. 334–348.