Vol. 35, issue 01, article # 8

Veretennikov V. V., Men'shchikova S. S. Annual variability of aerosol microstructure according to the data of horizontal transparency of the atmosphere in Tomsk. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. . DOI: 10.15372/AOO20220108 [in Russian].
Copy the reference to clipboard

Abstract:

The annual variability of aerosol microstructure of the near-surface aerosol has been studied based on solving the inverse problem for spectral measurements of aerosol extinction coefficient. The numerical algorithm based on the method of integral distributions was used to solve the inverse problem. The geometrical section, volume concentration, and mean radius of aerosol particles are considered. Aerosol microstructure parameters were estimated for the fine and coarse fractions and the total ensemble of particles. Estimates of the statistical characteristics of the distributions of aerosol microstructure parameters on monthly intervals are obtained. It has been shown that the fine particles make the main contribution to the total geometrical cross section of the near-surface aerosol, which varies within 73–88%. The coarse fraction predominates in the volume content of the near-surface aerosol, averaging about 75% over the entire observation period. During the observation period, the dependences of the monthly mean values of the geometrical cross section and the volume concentration of the fine aerosol had a monotonically increasing character. The volume concentration of fine particles has increased more than four times. The monthly average values of the volume concentration of coarse particles have changed twice.

Keywords:

near-surface aerosol microstructure, aerosol extinction coefficient, inverse problem

References:

  1. Belov V.V., Juwiler I., Blaunstein N., Tarasenkov M.V., Poznakharev E.S. NLOS Communication: Theory and experiments in the atmosphere and underwater // Atmosphere. 2020. V. 11, N 10. URL: 10.3390/atmos11101122 (last access: 27.06.2021).
  2. Tarasenkov M.V., Belov V.V., Poznakharev E.S. Modelirovanie protsessa peredachi informatsii po atmosfernym kanalam rasprostraneniya rasseyannogo lazernogo izlucheniya // Optika atmosf. i okeana. 2017. V. 30, N 5. P. 371–376; Tarasenkov M.V., Belov V.V., Poznakharev E.S. Simulation of information transfer through atmospheric channels of scattered laser radiation propagation // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 412–416.
  3. Tarasenkov M.V., Belov V.V. Sravnenie trudoemkosti algoritmov statisticheskogo modelirovaniya impul'snoj reaktsii kanala bistaticheskoj lazernoj svyazi na rasseyannom izluchenii i bistaticheskogo lazernogo zondirovaniya // Vychislitel'nye tekhnologii. 2017. V. 22, N 3. P. 91–102.
  4. Kaloshin G.A., Matvienko G.G., Shishkin S.A., Anisimov V.I., Butuzov V.V., Zhukov V.V., Stolyarov G.V., Pasyuk V.P. Potentsial lazernoj sistemy posadki samoletov // Optika atmosf. i okeana. 2016. V. 29, N 3. P. 232–242; Kaloshin G.A., Matvienko G.G., Shishkin S.A., Anisimov V.I., Butuzov V.V., Zhukov V.V., Stolyarov G.V., Pasyuk V.P. Potential of an aircraft landing laser system // Atmos. Ocean. Opt. 2016. V. 29, N 4. P. 353–364.
  5. Kaloshin G.A., Shishkin S.A. Detectable distance calculations for a visual navigation system using a scanning semiconductor laser with electronic pumping // Appl. Opt. 2011. V. 50, N 20. P. 3442–3448.
  6. URL: https://www.ipcc.ch/ (last access: 27.06.2021).
  7. URL: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (last access: 27.06.2021).
  8. Intergovernmental Panel on Climate Change. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge: Cambridge University Press, 2014. 1535 p.
  9. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S.K., Sherwood S., Stevens B., Zhang X.Y. Clouds and Aerosols // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge University Press, 2014. P. 571–657.
  10. Satellite aerosol remote sensing over land / A.A. Kokhanovsky, G. de Leeuw (eds.). UK, Chichester: Springer, Praxis, 2009. 398 p. DOI: 10.1007/978-3-540-69397-0.
  11. Von Hoyningen-Huene W., Yoon J., Vountas M., Istomina L.G., Rohen G., Dinter T., Kokhanovsky A.A., Burrows J.P. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS // Atmos. Meas. Tech. 2011. V. 4, N 2. P. 151–171.
  12. Belov V.V., Tarasenkov M.V., Engel M.V., Gridnev Yu.V., Zimovaya A.V., Poznakharev E.S., Abramochkin V.N., Fedosov A.V., Kudryavtsev A.N. Atmosfernaya korrektsiya sputnikovyh izobrazhenij zemnoj poverhnosti v opticheskom diapazone dlin voln. Opticheskaya svyaz' na rasseyannom izluchenii // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 753–757; Belov V.V., Tarasenkov M.V., Engel M.V., Gridnev Yu.V., Zimovaya A.V., Abramochkin V.N., Poznakharev E.S., Fedosov A.V., Kudryavtsev A.N. Atmospheric correction of satellite images of the earth’s surface in the optical wavelength range. optical communication based on scattered radiation // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 80–84. DOI: 10.15372/AOO20190908.
  13. Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel M.V. Vosstanovlenie koeffitsientov otrazheniya zemnoj poverhnosti po sputnikovym izmereniyam MODIS s uchetom polyarizatsii izlucheniya // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 641–649; Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel M.V. Retrieval of reflection coefficients of the earth’s surface from modis satellite measurements considering radiation polarization // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 179–187. DOI: 10.15372/AOO20190806.
  14. Fuzzi S., Baltensperger U., Carslaw K., Decesari S., Denier van der Gon H., Facchini M.C., Fowler D., Koren I., Langford B., Lohmann U., Nemitz E., Pandis S., Riipinen I., Rudich Y., Schaap M., Slowik J.G., Spracklen D.V., Vignati E., Wild M., Williams M., Gilardoni S. Particulate matter, air quality and climate: lessons learned and future needs // Atmos. Chem. Phys. 2015. V. 15, P. 8217–8299. URL: https://doi.org/10.5194/acp-15-8217-2015 (last access: 27.06.2021).
  15. WHO: Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. WHO, 2006. URL: https://www.euro.who.int/_ data/assets/pdf_file/0005/78638/ E90038.pdf (last access: 27.06.2021).
  16. WHO: Health effects of particulate matter. Policy implications for countries in Eastern Europe, Caucasus and central Asia. WHO, 2013. URL: https://www.euro.who.int/_data/assets/pdf_file/ 0006/189051/Health-effects-of- particulate-matter-final-Eng.pdf (last access: 27.06.2021).
  17. WMO/GAW Aerosol Measurement Procedures: Guidelines and Recommendations. Geneva: WMO, 2003. N 153. 67 p.
  18. WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations. Geneva: WMO, 2016. N 227. 103 p.
  19. WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023. Geneva: WMO, 2017. N 228. 84 p.
  20. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakadjima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – A federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16.
  21. URL: http://aeronet.gsfc.nasa.gov/ (last access: 27.06.2021).
  22. Wehrli C. GAW–PFR: A Network of Aerosol Optical Depth Observations with Precision Filter // WMO / U. Baltensperger, L. Barrie, C. Wehrli (eds.). Davos: WHO, 2004. N 162. 148 p. URL: https://library.wmo. int/index.php?lvl=notice_display&id=11094 (last access: 27.06.2021).
  23. McArthur L.J.B., Halliwell D.H., Niebergall O.J., O’Neill N.T., Slusser J.R., Wehrli C. Field comparison of network Sun photometers // J. Geophys. Res. 2003. V. 108, N D19. P. 4596. DOI: 10.1029/2002JD002964.
  24. Takamura T., Nakajima T. Overview of SKYNET and its activities // Opt. Pura Apl. 2004. V. 37. P. 3303–3308.
  25. URL: http://www.euroskyrad.net/ (last access: 27.06.2021).
  26. Remer L.A., Kaufman Y.J., Tanré D., Mattoo S., Chu D.A., Martins J.V., Li R.-R., Ichoku C., Levy R.C., Kleidman R.G., Eck T.F., Vermote E., Holben B.N. The MODIS aerosol algorithm, products, and validation // J. Atmos. Sci. 2005. V. 62, N 4. P. 947–973.
  27. Levy R.C., Mattoo S., Munchak L.A., Remer L.A., Sayer A.M., Patadia F., Hsu N.C. The Collection 6 MODIS aerosol products over land and ocean // Atmos. Meas. Tech. 2013. V. 6. P. 2989–3034. DOI: 10.5194/amt-6-2989-2013.
  28. Liu H., Remer L.A., Huang J., Huang H.-C., Kondragunta S., Laszlo I., Oo M., Jackson J.M. Preliminary evaluation of S-NPP VIIRS aerosol optical thickness // J. Geophys. Res. Atmos. 2014. V. 119. P. 3942–3962. DOI: 10.1002/2013JD020360.
  29. Levy R.C., Munchak L.A., Mattoo S., Patadia F., Remer L.A., Holz R.E. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance // Atmos. Meas. Tech. 2015. V. 8. P. 4083–4110. DOI: 10.5194/amt-8-4083-2015.
  30. Torres O., Tanskanen A., Veihelmann B., Ahn C., Braak R., Bhartia P.K., Veefkind P., Levelt P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview // J. Geophys. Res. 2007. V. 112. P. D24S47. DOI: 10.1029/2007JD008809.
  31. Ahn C., Torres O., Jethva H. Assessment of OMI near-UV aerosol optical depth over land // J. Geophys. Res. Atmos. 2014. V. 119. P. 2457–2473. DOI: 10.1002/2013JD020188.
  32. URL: https://gawsis.meteoswiss.ch/GAWSIS//index. html#/ (last access: 27.06.2021).
  33. Gorchakov G.I. Matritsa rasseyaniya sveta i tipy opticheskoj pogody // Izv. AN SSSR. Fiz. atmosf. i okeana. 1973. V. 9, N 2. P. 204–209.
  34. Gorchakov G.I., Emilenko A.S., Sviridenkov M.A. Odnoparametricheskaya model' prizemnogo aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1981. V. 17, N 1. P. 39–49.
  35. Kabanov M.V., Panchenko M.V., Phalagov Yu.A., Veretennikov V.V., Uzhegov V.N., Fadeev V.Ya. Opticheskie svojstva pribrezhnyh atmosfernyh dymok. Novosibirsk: Nauka, 1988. 201 p.
  36. Veretennikov V.V., Naats I.E., Panchenko M.V., Fadeev V.Ya. K opredeleniyu mikrostruktury i pokazatelya prelomleniya atmosfernyh dymok iz polyarizatsionnyh harakteristik svetorasseyaniya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1978. V. 14, N 12. P. 1313–1317.
  37. Veretennikov V.V., Kabanov M.V., Panchenko M.V. Mikrofizicheskaya interpretatsiya odnoparametricheskoj modeli polyarizatsionnyh indikatris (dymka pribrezhnogo rajona) // Izv. AN SSSR. Fiz. atmosf. i okeana. 1986. V. 22, N 10. P. 1042–1049.
  38. Veretennikov V.V. Interpretatsiya modeli spektral'nogo oslableniya dymki morskogo pribrezhnogo rajona // Optika atmosf. i okeana. 1990. V. 3, N 10. P. 1026–1033.
  39. Makienko E.V., Phalagov Yu.A., Rahimov R.F., Uzhegov V.N., Shchelkanov N.N. Issledovanie dinamiki razvitiya opticheski plotnyh zimnih dymok metodom obrashcheniya izmerenij spektral'noj prozrachnosti atmosfery // Optika atmosf. i okeana. 1994. V. 7, N 11–12. P. 1504–1507.
  40. Makienko E.V., Phalagov Yu.A., Rahimov R.F., Uzhegov V.N., Shchelkanov N.N. Analiz osobennostej mikrostruktury aerozolya zimnej dymki po rezul'tatam obrashcheniya dannyh opticheskih izmerenij // Optika atmosf. i okeana. 1995. V. 8, N 9. P. 1272–1279.
  41. Makienko E.V., Rahimov R.F., Phalagov Yu.A., Uzhegov V.N. Mikrofizicheskaya interpretatsiya anomal'noj spektral'noj zavisimosti aerozol'nogo oslableniya izlucheniya na prizemnoj trasse // Optika atmosf. i okeana. 2003. V. 16, N 12. P. 1102–1106.
  42. Rahimov R.F., Uzhegov V.N., Makienko E.V., Phalagov Yu.A. Mikrofizicheskaya interpretatsiya sezonnoj i sutochnoj izmenchivosti spektral'noj zavisimosti koeffitsienta aerozol'nogo oslableniya na prizemnyh trassah // Optika atmosf. i okeana. 2004. V. 17, N 5–6. P. 386–404.
  43. Veretennikov V.V., Men'shchikova S.S., Uzhegov V.N. Izmenchivost' parametrov mikrostruktury prizemnogo aerozolya v letnij sezon po rezul'tatam obrashcheniya izmerenij spektral'nogo oslableniya sveta na gorizontal'noj trasse v Tomske. Part I. Geometricheskoe sechenie submikronnyh i grubodispersnyh chastits // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 857–866. DOI: 10.15372/AOO20181101; Veretennikov V.V., Men’shchikova S.S., Uzhegov V.N. Variability in parameters of the near-surface aerosol microstructure in summer according to results of inversion of measurements of spectral extinction of light on a horizontal path in Tomsk: Part I – geometrical cross section of fine and coarse particles // Atmos. Ocean. Opt. 2019. V. 32, N. 2. P. 128–137. DOI: 10.1134/S1024856019020155.
  44. Veretennikov V.V., Men’shchikova S.S., Uzhegov V.N. Izmenchivost' parametrov mikrostruktury prizemnogo aerozolya v letnij sezon po rezul'tatam obrashcheniya izmerenij spektral'nogo oslableniya sveta na gorizontal'noj trasse v Tomske. Part II. Ob"emnaya kontsentratsiya i srednij radius chastits // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 867–875. DOI: 10.15372/AOO20181102; Veretennikov V.V., Men’shchikova S.S., Uzhegov V.N. Variability in parameters of the near-surface aerosol microstructure in summer according to results of inversion of measurements of spectral extinction of light on a horizontal path in Tomsk: Part II – volume concentration and mean radius of particles // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 138–146. DOI: 10.1134/S1024856019020167.
  45. Isakov A.A., Gruzdev A.N., Tihonov A.V. O dolgoperiodnyh variatsiyah opticheskih i mikrofizicheskih parametrov prizemnogo aerozolya // Optika atmosf. i okeana. 2005. V. 18, N 5–6. P. 393–399.
  46. Isakov A.A., Gruzdev A.N. Dolgoperiodnye variatsii opticheskih i mikrofizicheskih parametrov prizemnogo aerozolya na Zvenigorodskoj nauchnoj stantsii // Izv. RAN. Fizika atmosf. i okeana. 2009. V. 45, N 2. P. 245–254.
  47. Kozlov V.S., Panchenko M.V., Tumakov A.G., Shmargunov V.P., Yausheva E.P. Some peculiarities of the mutual variability of the content of soot and sub-micron aerosol in the near-ground air layer // J. Aerosol Sci. 1997. V. 28, suppl. 1. P. 231–232.
  48. Kozlov V.S., Panchenko M.V., Yausheva E.P. Vremennaya izmenchivost' soderzhaniya submikronnogo aerozolya i sazhi v prizemnom sloe atmosfery Zapadnoj Sibiri // Optika atmosf. i okeana. 2007. V. 20, N 12. P. 1082–1085.
  49. Panchenko M.V., Terpugova S.A., Kozlov V.S., Pol'kin V.V., Yausheva E.P. Godovoj hod kondensatsionnoj aktivnosti submikronnogo aerozolya v prizemnom sloe atmosfery Zapadnoj Sibiri // Optika atmosf. i okeana. 2005. V. 18, N 8. P. 678–683.
  50. Gruza G.V., Ran'kova E.Ya., Bardin M.Yu., Rocheva E.V., Platova T.V., Samohina O.F., Sokolov Yu.Yu., Rachkulik O. Izmeneniya klimata 2003. Obzor sostoyaniya i tendentsij izmeneniya klimata Rossii. Byulleten' Instituta global'nogo klimata i ekologii Rosgidrometa i RAN. M., 2004. 19 p.
  51. URL: http://thermograph.ru/mon/st_29430-y_2003.htm (last access: 24.04.2018).
  52. Belan B.D., Rasskazchikova T.M., Sklyadneva T.K. Sinopticheskij rezhim Tomska za 1993–2004 years // Optika atmosf. i okeana. 2005. V. 18, N 10. P. 887–892.
  53. Belan B.D., Ivlev G.A., Sklyadneva T.K. Mnogoletnij monitoring summarnoj i ul'trafioletovoj (B) radiatsii v rajone g. Tomska // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 61–65.
  54. Sklyadneva T.K., Rasskazchikova T.M., Arshinova V.G., Arshinov M.Yu. Izmenenie radiatsionnyh i meteorologicheskih parametrov atmosfery po dannym nablyudenij v Tomske // Optika atmosf. i okeana. 2018. V. 31, N 4. P. 288–293.
  55. Phalagov Yu.A., Uzhegov V.N., Shchelkanov N.N. Avtomatizirovannyj mnogovolnovoj izmeritel' spektral'noj prozrachnosti prizemnoj atmosfery // Optika atmosf. i okeana. 1992. V. 5, N 6. P. 667–671.
  56. URL: http://lop.iao.ru/RU/tor/MeteoandGas/ (last access: 24.04.2018).
  57. Veretennikov V.V., Men’shchikova S.S. Osobennosti vosstanovleniya mikrostrukturnyh parametrov aerozolya iz izmerenij aerozol'noj opticheskoj tolshchiny. Part I. Metodika resheniya obratnoj zadachi // Optika atmosf. i okeana. 2013. V. 26, N 4. P. 306–312; Veretennikov V.V., Men’shchikova S.S. Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 473–479. DOI: 10.1134/S1024856013060134.
  58. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat, 1986. 256 p.
  59. Krekov G.M., Rahimov R.F. Optiko-lokatsionnaya model' kontinental'nogo aerozolya. Novosibirsk: Nauka, 1982. 198 p.
  60. Rajst P. Aerozoli. Vvedenie v teoriyu. M.: Mir, 1987. 280 p.
  61. Klimaticheskie harakteristiki uslovij rasprostraneniya primesej v atmosfere / pod red. E.Yu. Bezugloj, M.E. Berlyanda. L.: Gidrometeoizdat, 1983. 328 p.
  62. Dudorova N.V., Belan B.D. Radiatsionnyj balans podstilayushchej poverhnosti g. Tomska v 2004–2005 years // Optika atmosf. i okeana. 2015. V. 28, N 3. P. 223–228; Dudorova N.V., Belan B.D. Radiation balance of underlying surface in Tomsk during 2004–2005 // Atmos. Ocean. Opt. 2015. V. 28, N 4. P. 312–317.