Vol. 35, issue 01, article # 6

Timofeev D. N., Konoshonkin A. V., Kustova N. V., Shishko V. A. Light backscattering properties of atmospheric hexagonal ice particles with distorted shape within physical optics approximation. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. . DOI: 10.15372/AOO20220106 [in Russian].
Copy the reference to clipboard

Abstract:

The calculation of the light backscattering matrices of atmospheric hexagonal ice particles distorted with different methods within the physical optics approximation for the case of arbitrary spatial orientation and single scattering was carried out. The hexagonal prism with height of 31.62 mm and external diameter of 22.14 mm, which is typical for “column” shape that is occurs in cirrus clouds, was chosen as the base geometrical shape for distortion. The calculation was carried out for particles generated with three methods of distortion of base facets: tilt, pike, and cavity. The angle of distortion varied from 0 to 50° for every type of particles. The wavelength of incident radiation was equal to 1.064 mm.

Keywords:

light backscattering, cirrus clouds, ice particles, shape distortion, physical optics

Figures:

References:

1. Liou K.N. Influence of cirrus clouds on weather and climate processes: A global perspective // Mon. Weather. Rev. 1986. V. 114, N 6. P. 1167–1199.
2. Takano Y., Liou K.N. Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals // J. Atmos. Sci. 1989. V. 46, N 1. P. 3–19.
3. Sassen K., Benson S. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization // J. Atmos. Sci. 2001. V. 58, N 15. P. 2103–2112.
4. Kaul' B.V., Volkov S.N., Samohvalov I.V. Rezul'taty issledovanij kristallicheskih oblakov posredstvom lidarnyh izmerenij matrits obratnogo rasseyaniya sveta // Optika atmosf. i okeana. 2003. V. 16, N 4. P. 354–361.
5. Bank dannyh matrits obratnogo rasseyaniya sveta [Elektronnyj resurs]. URL: ftp://ftp.iao.ru/pub/GWDT/ (data obrashcheniya: 12.11.2021).
6. Shishko V.A., Bryukhanov I.D., Ni E.V., Kustova N.V., Timofeev D.N., Konoshonkin A.V. Algoritm interpretatsii matrits obratnogo rasseyaniya sveta peristyh oblakov dlya vosstanovleniya ih mikrofizicheskih parametrov // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 186–192; Shishko V.A., Bryukhanov I.D., Nie E.V., Kustova N.V., Timofeev D.N., Konoshonkin A.V. Algorithm for interpreting light backscattering matrices of cirrus clouds for the retrieval of their microphysical parameters // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 393–399.
7. Kunz K.S., Luebbers R.J. Finite Difference Time Domain Method for Electromagnetics. Boca Raton: FL CRC Press, 1993. 448 p.
8. Yang P., Bi L., Kattawar G., Panetta R.L. Optical properties of nonspherical atmospheric particles and relevant applications // AAPP Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali. 2011. V. 89, suppl. 1. DOI: 10.1478/C1V89S1P012.
9. Purcell E.M., Pennypacker C.R. Scattering and absorption of light by nonspherical dielectric grains // Astrophys. J. 1973. V. 186. P. 705–714.
10. Grynko Y., Shkuratov Y., Förstner J. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness // Opt. Lett. 2016. V. 41, N 15. P. 3491.
11. Yurkin M.A., Hoekstra A.G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2234–2247.
12. Jacobowitz H. A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 1971. V. 11, N 6. P. 691–695.
13. Macke A., Mueller J., Raschke E. Single scattering properties of atmospheric ice crystal // J. Atmos. Sci. 1996. V. 53, N 19. P. 2813–2825.
14. Borovoi A.G., Grishin I.A. Scattering matrices for large ice crystal particles // J. Opt. Soc. Am. A. 2003. V. 20. P. 2071–2080.
15. Borovoi A., Konoshonkin A., Kustova N. The physics optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.
16. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Osobennosti v depolyarizatsionnom otnoshenii lidarnyh signalov dlya haoticheski orientirovannyh ledyanyh kristallov peristyh oblakov // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 385–387.
17. Konoshonkin A., Wang Z., Borovoi A., Kustova N., Liu D., Xie C. Backscatter by azimuthally oriented ice crystals of cirrus clouds // Opt. Express. 2016. V. 24, N 18. P. A1257–A1268.
18. Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Otsenka vliyaniya pogloshcheniya na rasseyanie sveta na atmosfernyh ledyanyh chastitsah dlya dlin voln, harakternyh dlya zadach lazernogo zondirovaniya atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 381–385; Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere // Atmos. Ocean. Opt. 2019 V. 32, N 5. P. 564–568.
19. Bi L., Yang P. Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols // Light Scatt. Rev. Berlin, Heidelberg: Springer, 2013. P. 69–114.
20. Zhou C., Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23. P. 11995–12003.
21. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38, N 15. P. 2881–1884.
22. Um J., McFarquhar G.M., Hong Y.P., Lee S.-S., Jung C.H., Lawson R.P., Mo Q. Dimensions and aspect ratios of natural ice crystals // Atmos. Chem. Phys. 2015. V. 15. P. 3933–3956.
23. Yang P., Stegmann P., Tang G., Hioki S., Ding J. Improving scattering, absorption, polarization properties of snow, graupel, and ice aggregate particles from solar to microwave wavelengths in support of the CRTM // JCSDA quarterly. 2018. N 59. P. 8–14. DOI: 10.7289/V5/Q-JCSDA-59-2018.
24. Konoshonkin A.V., Kustova N.V., Borovoi A.G. Algoritm trassirovki puchkov dlya zadachi rasseyaniya sveta na atmosfernyh ledyanyh kristallah. Part 1. Teoreticheskie osnovy algoritma // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 324–330; Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 441–447.
25. Konoshonkin A., Borovoi A., Kustova N., Reichardt J.
Power laws for backscattering by ice crystals of cirrus clouds // Opt. Express. 2017. V. 25. P. 22341–22346.
26. Chen W.-N., Chiang C.-W., Nee J.-B. Lidar ratio and depolarization ratio for cirrus clouds // Appl. Opt. 2002. V. 41. P. 6470–6476.
27. Kustova N.V., Borovoi A.G., Konoshonkin A.V., Veselovskii I.A. Appearance of the corner reflection effect in cirrus clouds for off-zenith lidar profiling // Proc. SPIE. 2018. P. 1083346. DOI: 10.1117/12.2504123.
28. Del Guasta M. Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of “face tracing” // J. Geophys. Res.: Atmos. 2001. V. 106. P. 12589–12602.
29. Shishko V.A., Konoshonkin A.V., Kustova N.V., Borovoi A.G. Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns // Proc. SPIE. 2017. P. 1046646. DOI: 10.1117/12.2288275
30. Mitchell D.L., Arnott W.P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation // J. Atmos. Sci. 1994. V. 51. P. 817–832.
31. Warren S.G. Optical constants of ice from the ultraviolet to the microwave // Appl. Opt. 1984. V. 23. P. 1206–1225.
32. Konoshonkin A.V., Borovoj A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernyh ledyanyh kristallah v priblizhenii fizicheskoj optiki. Novosibirsk: Izd-vo SO RAN, 2020. 219 p.