Vol. 35, issue 01, article # 4

Dembelov M. G., Bashkuev Yu. B. Estimation of the moisture content of the troposphere derived from GPS observations, radiosonde data, and measurements with a water vapor radiometer. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. . DOI: 10.15372/AOO20220104 [in Russian].
Copy the reference to clipboard


The comparison of data on the moisture content of the troposphere obtained from GPS satellite monitoring, radiosondes, and water vapor radiometer measurements at permanent observation points IRKM (Irkutsk, 52°13¢ N, 104°19¢ E, h = 511 m) and BADG (Badary, 51°46¢ N, 102°14¢ E, h = 838 m) is presented. Values of the total zenith tropospheric delay for the BADG observation point derived from processing of the primary GPS data with the GAMIT and Bernese software packages are compared. Time series of tropospheric moisture content for the IRKM station derived from GPS observations and radio soundings and for the BADG station found from GPS observations and water vapor radiometer measurements during 2020 are analyzed and compared. The use of the GPS method for monitoring the moisture content of the troposphere at the network being created in the Baikal region has been substantiated.


GPS measurements, radio sounding, water vapor radiometer, zenith tropospheric delay, meteorological data, tropospheric moisture content


  1. Bevis M., Businger S., Herring T.A., Rocken C., Anthes A., Ware R. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system // J. Geophys. Res. 1992. V. 97. P. 15787–15801.
  2. Hopfield H.S. Two quartic tropospheric refractivity profile for correcting satellite data // J. Geophys. Res. 1969. V. 74, N 18. P. 4487–4499.
  3. Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellite // Int. Sympos. on the Use of Artificial Satellite. Washington. 1971. P. 247–251.
  4. Davis J.L., Herring T.A., Shapiro I.I., Rogers A.E., Elgered G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length // Radio Sci. 1985. V. 20. P. 1593–1607.
  5. Elgered G., Davis J.L., Herring T.A., Shapiro I.I. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay // J. Geophys. Res. 1991. V. 96. P. 6541–6555.
  6. Zhang Q., Ye J., Zhang S., Han F. Precipitable water vapor retrieval and analysis by multiple data sources: Ground-based GNSS, radio occultation, radiosonde, microwave satellite, and NWP reanalysis data // J. Sensors. 2018. V. 2018. Article ID 3428303.
  7. Bernet L., Brockmann E., Clarmann T., Kampfer N., Mahieu E., Matzler C., Stober G., Hocke K. Trends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data // Atmos. Chem. Phys. 2020. V. 20, N 19. P. 11223–11244.
  8. Kalinnikov V.V., Hutorova O.G. Pole integral'nogo vlagosoderzhaniya nad severo-vostokom Sibiri po dannym radioizmerenij global'nyh navigatsionnyh sputnikovyh sistem // Meteorol. i gidrol. 2016. N 10. P. 5–15.
  9. Kalinnikov V.V., Hutorova O.G. Validatsiya integral'nogo soderzhaniya vodyanogo para po dannym nazemnyh izmerenij // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 4, P. 58–63.
  10. Benevides P., Catalao J., Miranda P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall // Nat. Hazards Earth Syst. Sci. 2015. N 15. P. 2605–2616.
  11. Zhang F., Barriot J.-P., Xu G., Hopuare M. Modeling the slant wet delays from one GPS receiver as a series 376 expansion with respect to time and space: Theory and an example of application for the Tahiti island // IEEE Trans. Geosci. Remote Sens. 2020. V. 58. P. 7520–7532.
  12. Yang P., Zhao Q., Li Z., Yao W., Yao Y. High temporal resolution global PWV dataset of 2005–2016 by using a neural network approach to determine the mean temperature of the atmosphere // Adv. Space Res. 2021. V. 67. P. 3087–3097.
  13. Zhu D., Zhang K., Yang L., Wu S., Li L. Evaluation and calibration of MODIS near-infrared precipitable water vapor over China using GNSS observations and ERA-5 reanalysis dataset // Remote Sens. 2021. V. 13. P. 2761.
  14. Sun Z., Zhang B., Yao Y. Improving the estimation of weighted mean temperature in China using machine learning methods // Remote Sens. 2021. V. 13. P. 1–18.
  15. Baltink H.K. Integrated atmospheric water vapor estimates from a regional GPS network // J. Geophys. Res. 2002. V. 107, N D3. P. 4025. DOI: 10.1029/2000jd000094.
  16. Suresh Raju C., Saha K., Thampi B.V., Parameswaran K. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements // Ann. Geophys. 2007. V. 25. P. 1935–1948.
  17. Mekik C., Deniz I. Modelling and validation of the weighted mean temperature for Turkey // Meteorol. Appl. 2017. V. 24. P. 92–100.
  18. Zhang F., Barriot J.-P., Xu G., Hopuare M. Analysis and comparison of GPS precipitable water estimates between two nearby stations on Tahiti island // Sensors. 2019. V. 19. P. 1–26.
  19. Kaplan E., Hegarty C. Understanding GPS: Principles and applications. Boston/London: Artech house, 2005. 723 p.
  20. Ashby N. Relativity in the global positioning system // Living Rev. Relativity. 2003. V. 6, N 1. P. 1–42.
  21. Niell A.E. Global mapping functions for the atmosphere delay at radio wave lengths // J. Geophys. Res: Solid Earth. 1996. V. 101, N B2. P. 3227–3246.
  22. Lukhneva O.F., Dembelov M.G., Lukhnev A.V., The determination of atmospheric water content by the meteorological and GPS data // Geodyn. Tectonophys. 2016. V. 7, N 4. P. 545–553.
  23. Dembelov M.G., Bashkuev Yu.B., Lukhnev A.V., Lukhneva O.F., San’kov V.A. Diagnostika soderzhaniya atmosfernogo vodyanogo para po dannym GPS-izmerenij // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 172–177; Dembelov M.G., Bashkuev Yu.B., Lukhnev A.V., Lukhneva O.F., San’kov V.A. Diagnostics of atmospheric water vapor content according to GPS measurements // Atmos. Ocean. Opt. 2015. V. 28, N 4. P. 291–296.
  24. King R.W., Bock Y. Documentation for the GAMIT GPS software analysis version 9.9. Mass. Inst. of Technol. 1999. Cambridge.
  25. URL: http://www.igs.org/products (last access: 10.08.2021).
  26. Dach R., Hugentobler U., Fridez P., Meindl M. Bernese GPS software version 5.0. Astronomical Institute, University of Bern. Bern. 2007.
  27. Kashkin V.B., Vladimirov V.M., Klykov A.O. Zenitnaya troposfernaya zaderzhka signalov GLONASS/GPS po sputnikovym dannym ATOVS // Optika atmosf. i okeana. 2014. V. 27, N 7. P. 615–621; Kashkin V.B., Vladimirov V.M., Klykov A.O. Zenith tropospheric delay of GLONASS/GPS signals on the basis of ATOVS satellite data // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 68–73.
  28. Rocken C., Ware R., Van Hove T., Solheim F., Alber C., Johnson J. Sensing atmospheric water vapor with the global positioning system // Geophys. Res. Lett. 1993. V. 20. P. 2631–2634.
  29. Bykov V.Yu., Il'in G.N., Karavaev D.M., Shchukin G.G. Rezul'taty mikrovolnovogo eksperimenta: perspektivy radiometra vodyanogo para // Tr. Voenno-kosmicheskoj akademii im. A.F. Mozhajskogo. 2019. N 670. P. 150–153.