Vol. 35, issue 01, article # 2

Arshinov M. Yu., Belan B. D., Garmash O. V., Davydov D. K., Demakova A. A., Ezhova E. V., Kozlov A. V., Kulmala M., Lappalainen H., Petäjä T. Correlation between the concentrations of atmospheric ions and radon as judged from measurements at the Fonovaya Observatory. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. . DOI: 10.15372/AOO20220102.
Copy the reference to clipboard


The correlation between the radon influx into the atmosphere and the formation of ions has been studied based on observations at the Fonovaya Observatory of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. This correlation is shown to be stable in the period from October to January. In the other months, the correlation is disturbed. However, if the events of nucleation and lightning discharges are removed from the data set, then the correlation is kept throughout the year.


atmosphere, air, ions, nanoparticles, neutral particles, nucleation, radon, interconnection



  1. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. P. 1–41.
  2. Fuks N.A. Mekhanika aerozolej. AN SSSR, 1955. 352 p.
  3. Rozenberg G.V., Lyubovtseva Yu.S., Gorchakov G.I. Fonovyj aerozol' Abastumani // Izv. AN SSSR. Fiz. atmosf. i okeana. 1982. V. 18, N 8. P. 822–839.
  4. Rozenberg G.V. Vozniknovenie i razvitie atmosfernogo aerozolya – kineticheski obuslovlennye parametry // Izv. AN SSSR. Fiz. atmosf. i okeana. 1983. V. 19, N 1. P. 21–35.
  5. Rozenberg G.V. Kineticheskaya model' obezvozhennogo tonkodispersnogo aerozolya troposfery // Izv. AN SSSR. Fiz. atmosf. i okeana. 1983. V. 19, N 3. P. 241–254.
  6. Hirsikko A., Nieminen T., Gagne S., Lehtipalo K., Manninen H.E., Ehn M., Horrak U., Kerminen V.-M., Laakso L., McMurry P.H., Mirme A., Mirme S., Petaja T., Tammet H., Vakkari V., Vana M., Kulmala M. Atmospheric ions and nucleation: A review of observations // Atmos. Chem. Phys. 2011. V. 11, N 2. P. 767–798.
  7. Gonser S.G., Klein F., Birmili W., Größ J., Kulmala M., Manninen H.E., Wiedensohler A., Held A. Ion – particle interactions during particle formation and growth at a coniferous forest site in central Europe // Atmos. Chem. Phys. 2014. V. 14, N 19. P. 10547–10563.
  8. Mazon S.B., Kontkanen J., Manninen H.E., Nieminen T., Kerminen V.-M., Kulmala M. A long-term comparison of nighttime cluster events and daytime ion formation in a boreal forest // Boreal Environ. Res. 2016. V. 21, N 3–4. P. 242–261.
  9. Leino K., Nieminen T., Manninen H.E., Petäjä T., Kerminen V.-M., Kulmala M. Intermediate ions as a strong indicator of new particle formation bursts in boreal forest // Boreal Environ. Res. 2016. V. 21, N 3–4. P. 274–286.
  10. Yu F., Turco R.P. The size-dependent charge fraction of sub-3-nm particles as a key diagnostic of competitive nucleation mechanisms under atmospheric conditions // Atmos. Chem. Phys. 2011. V. 11, N 18. P. 9451–9463.
  11. Merikanto J., Duplissy J., Määttänen A., Henschel H., Donahue N.M., Brus D., Schobesberger S., Kulmala M., Vehkamäki H. Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications // J. Geophys. Res.: Atmos. 2016. V. 121, N 4. P. 1736–1751. DOI: 10.1002/2015JD023538.
  12. Dunne E.M., Lee L.A., Reddington C.L., Carslaw K.S. No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols // Atmos. Chem. Phys. 2012. V. 12, N 23. P. 11573–11587.
  13. Kirkby J., Duplissy J., Sengupta K., Frege C., Gordon H., Williamson C., Heinritzi M., Simon M., Yan C., Almeida J., Tröstl J., Nieminen T., Ortega I.K., Wagner R., Adamov A., Amorim A., Bernhammer A.-K., Bianchi F., Breitenlechner M., Brilke S., Chen X., Craven J., Dias A., Ehrhart S., Flagan R.C., Franchin A., Fuchs C., Guida R., Hakala J.,  Hoyle C.R., Jokinen T., Junninen H., Kangasluoma J., Kim J., Krapf M., Kürten A., Laaksonen A., Lehtipalo K., Makhmutov V., Mathot S., Molteni U., Onnela A., Peräkylä O., Piel F., Petäjä T., Praplan A.P., Pringle K., Rap A., Richards N.A.D., Riipinen I., Rissanen M.P., Rondo L., Sarnela N., Schobesberger S., Scott C.E., Seinfeld J.H., Sipilä M., Steiner G., Stozhkov Y., Stratmann F., Tomé A., Virtanen A., Vogel A.L., Wagner A.C., Wagner P.E., Weingartner E., Wimmer D., Winkler P.M., Ye P., Zhang X., Han­sel A., Dommen J., Donahue N.M., Worsnop D.R., Baltensperger U., Kulmala M., Carslaw K.S., Curtius J. Ion-induced nucleation of pure biogenic particles // Nature. 2016. V. 533, N 7604. P. 521–526.
  14. Serrano C., Reis A.H., Rosa R., Lucio P.A. Influences of cosmic radiation, artificial radioactivity and aerosol concentration upon the fair-weather atmospheric electric field in Lisbon (1955–1991) // Atmos. Res. 2006. V. 81, N 2. P. 236–249.
  15. Manohar S.N., Meijer H.A.J., Herber M.A. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides // Atmos. Environ. 2013. V. 81. P. 399–412.
  16. Anisimov S.V., Galichenko S.V., Afinogenov K.V., Makrushin A.P., Shihova N.M. Ob"emnaya aktivnost' radona i ionoobrazovanie v nevozmushchennoj nizhnej atmosfere: nazemnye nablyudeniya i chislennoe modelirovanie // Fizika Zemli. 2017. N 1. P. 155–170.
  17. Komppula M., Vana M., Kerminen V.-M., Lihavainen H., Viisanen Y., Hõrrak U., Komsaare K., Tamm E., Hirsikko A., Laakso L. Kulmala M. Size distributions of atmospheric ions in the Baltic Sea region // Boreal Environ. Res. 2007. V. 12, N 3. P. 323–336.
  18. Chen X., Virkkula A., Kerminen V.-M., Manninen H.E., Busetto M., Lanconelli C., Lupi A., Vitale V., del Guasta M., Grigioni P., Väänänen R., Duplissy E.-M., Petäjä T., Kulmala M. Features in air ions measured by an air ion spectrometer (AIS) at Dome C // Atmos. Chem. Phys. 2017. V. 17, N 22. P. 13783–13800.
  19. Zhang K., Feichter J., Kazil J., Wan H., Zhuo W., Griffiths A.D., Sartorius H., Zahorowski W., Ramonet M., Schmidt M., Yver C., Neubert R.E.M., Brunke E.-G. Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions // Atmos. Chem. Phys. 2011. V. 11, N 15. P. 7817–7838.
  20. López-Coto I., Mas J.L., Bolivar J.P. A 40-year retrospective European radon flux inventory including climatological variability // Atmos. Environ. 2013. V. 73. P. 22–33.
  21. Berezina E.V., Elansky N.F., Moiseenko K.B., Belikov I.B., Shumsky R.A., Safronov A.N., Brenninkmeijer C.A.M. Estimation of nocturnal 222Rn soil fluxes over Russia from TROICA measurements // Atmos. Chem. Phys. 2013. V. 23, N 15. P. 11695–11708.
  22. Sahoo S.K., Katlamudi M., Shaji J.P., Krishna K.S.M., Lakshmi G.U. Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India // Environ. Monit. Assess. 2018. V. 190, N 111.
  23. Podstawczynska A. Differences of near-ground atmospheric Rn-222 concentration between urban and rural area with reference to microclimate diversity // Atmos. Environ. 2016. V. 126. P. 225–234.
  24. Bottardi C., Alberi M., Baldoncini M., Chiarelli E., Montuschi M., Raptis K.G.C., Serafini A., Strati V., Mantovani F. Rain rate and radon daughters’ activity // Atmos. Environ. 2020. V. 238. P. 117728.
  25. Antonovich V.V., Antokhin P.N., Arshinov M.Yu., Belan B.D., Balin Y.S., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov V.S., Kokhanenko G.P., Novoselov M.M. Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs // Phys. Proc. SPIE. 2018. V. 10833. P. 108337Z.
  26. Belan B.D. Dinamika sloya peremeshivaniya po aerozol'nym dannym // Optika atmosf. i okeana. 1994. V. 7, N 8. P. 1045–1054.
  27. Belan B.D. Ozon v troposfere. Tomsk: IOA SO RAN, 2010. 488 p.
  28. Porstendorfer J. Svojstva i povedenie radona i torona i ih dochernih produktov v vozduhe // Problemy okruzhayushchej sredy i prirodnyh resursov. 2001. Iss. 9. P. 59–98.
  29. Chambers S.D., Williams A.G., Crawford J., Griffiths A.D. On the use of radon for quantifying the effects of atmospheric stability on urban emissions // Atmos. Chem. Phys. 2015. V. 15, N 3. P. 1175–1190.
  30. Chen X., Paatero J., Kerminen V.-M., Riuttanen L., Hatakka J., Hiltunen V., Paasonen P., Hirsikko A., Franchin A., Manninen H.E., Petäjä T., Viisanen Y., Kulmala M. Responses of the atmospheric concentration of radon-222 to the vertical mixing and spatial transportation // Boreal Environ. Res. 2016. V. 21, N 3–4. P. 299–318.
  31. Victor N.J., Siingh D., Singh R.P., Singh R., Kamra A.K. Diurnal and seasonal variations of radon (222Rn) and their dependence on soil moisture and vertical stability of the lower atmosphere at Pune, India // J. Atmos. Sol.-Terr. Phys. 2019. V. 195. P. 105118.
  32. Chambers S., Williams A.G., Zahorowski W., Griffiths A., Crawford J. Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere // Tellus B. 2011. V. 63, N 5. P. 843–859.
  33. Wang Y., Wang Ya., Duan J., Cheng T., Zhu H., Xie X., Liu Y., Ling Y., Li X., Wang H., Li M., Zhang R. Temporal variation of atmospheric static electric field and air ions and their relationships to pollution in Shanghai // Aerosol Air Qual. Res. 2018. V. 18, N 7. P. 1631–1641.
  34. Li Y., Guo X., Wang T., Zhao Y., Zhang H., Wang W. Characteristics of atmospheric small ions and their application to assessment of air quality in a typical semi-arid city of Northwest China // Aerosol Air Qual. Res. 2015. V. 15, N 3. P. 865–874.
  35. Kamsali N., Pawar S.D., Murugavel P., Gopalakrishnan V. Estimation of small ion concentration near the Earth’s surface // J. Atmos. Sol.-Terr. Phys. 2011. V. 73, N 16. P. 2345–2351.
  36. Ling X., Jayaratne R., Morawska L. The relationship between airborne small ions and particles in urban environments // Atmos. Environ. 2013. V. 79. P. 1–6.
  37. Dos Santos V.N., Herrmann E., Manninen H.E., Hussein T., Hakala J., Nieminen T., Aalto P.P., Merkel M., Wiedensohler A., Kulmala M., Petäjä T., Hämeri K. Variability of air ion concentrations in urban Paris // Atmos. Chem. Phys. 2015. V. 15, N 23. P. 13717–13737.
  38. Chambers S.D., Hong S.-B., Williams A.G., Crawford J., Griffiths A.D., Park S.-J. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island // Atmos. Chem. Phys. 2014. V. 14, N 18. P. 9903–9916.
  39. Bothaa R., Labuschagne C., Williams A.G., Bosmane G., Brunke E.-G., Rossouw A., Lindsaya R. Characterising fifteen years of continuous atmospheric radon activity observations at Cape Point (South Africa) // Atmos. Environ. 2018. V. 176. P. 30–39.
  40. Kalivitis N., Stavroulas I., Bougiatioti A., Kouvarakis G., Gagne S., Manninen H.E., Kulmala M., Mihalopoulos N. Night-time enhanced atmospheric ion concentrations in the marine boundary layer // Atmos. Chem. Phys. 2012. V. 12, N 8. P. 3627–3638.
  41. Miao S., Zhang X., Han Y., Sun W., Liu C. Yin S. Random forest algorithm for the relationship between negative air ions and environmental factors in an urban park // Atmosphere. 2018. V. 9, N 12. P. 463.
  42. Salma I., Vörösmarty M., Gyöngyösi A.Z., Thén W., Weidinger T. What can we learn about urban air quality with regard to the first outbreak of the COVID-19 pandemic? A case study from central Europe // Atmos. Chem. Phys. 2020. V. 20, N 24. P. 15725–15742.
  43. Johnson T.F., Hordley L.A., Greenwell M.P., Evans L.C. Associations between COVID-19 transmission rates, park use, and landscape structure // Sci. Total Environ. 2021. V. 789. P. 148123.
  44. Mertens M., Jöckel P., Matthes S., Nützel M., Grewe V., Sausen R. COVID-19 induced lower-tropospheric ozone changes // Environ. Res. Lett. 2021. V. 16, N 6. P. 064005.
  45. Bouarar I., Gaubert B., Brasseur G.P., Steinbrecht W., Doumbia T., Tilmes S., Liu Y., Stavrakou T., Deroubaix A., Darras S., Granier C., Lacey F., Muller J.-F., Shi X., Elguindi N., Wang T. Ozone anomalies in the free troposphere during the COVID-19 pandemic // Geophys. Res. Lett. 2021. V. 46, N 16. P. 094204.
  46. Bolshev L.N. Tablitsy matematicheskoj statistiki. M.: Nauka, 1983. 416 p.
  47. Tammet H., Komsaare K., Hõrrak U. Intermediate ions in the atmosphere // Atmos. Res. 2014. V. 135–136. P. 263–273.
  48. Jayaratne E.R., Ling X., Morawska L. Suppression of cluster ions during rapidly increasing particle number concentration events in the environment // Aerosol Air Qual. Res. 2015. V. 15, N 1. P. 28–37.
  49. Salma I., Thén W., Aalto P., Kerminen V.-M., Kern A., Barcza Z., Petäjä T., Kulmala M. Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth // Atmos. Chem. Phys. 2021. V. 21, N 4. P. 2861–2880.
  50. Li H., Canagaratna M.R., Riva M., Rantala P., Zhang Y., Thomas S., Heikkinen L., Flaud P.-M., Villenave E., Perraudin E., Worsnop D., Kulmala M., Ehn M., Bianchi F. Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: insights into monoterpene and sesquiterpene oxidation processes // Atmos. Chem. Phys. 2021. V. 21, N 5. P. 4123–4147.
  51. Rose C., Sellegri K., Freney E., Dupuy R., Colomb A., Pichon J.-M., Ribeiro M., Bourianne T., Burnet F., Schwarzenboeck A. Airborne measurements of new particle formation in the free troposphere above the Mediterranean Sea during the HYMEX campaign // Atmos. Chem. Phys. 2015. V. 15, N 17. P. 10203–10218.
  52. Wehner B., Werner F., Ditas F., Shaw R.A., Kulmala M., Siebert H. Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds // Atmos. Chem. Phys. 2015. V. 15, N 17. P. 10203–10218.
  53. Arshinov M.Yu., Belan B.D., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov A.S., Malyshkin S.B., Simonenkov D.V., Antohin P.N. Nukleatsionnye vspleski v atmosfere boreal'noj zony Zapadnoj Sibiri. Chast' I. Klassifikatsiya i povtoryaemost' // Optika atmosf. i okeana. 2014. V. 27, N 9. P. 766–774.
  54. Kulmala M., Laakso L., Lehtinen K.E.J., Riipinen I., Dal Maso M., Anttila T., Kerminen V.-M., Hõrrak U., Vana M., Tammet H. Initial steps of aerosol growth // Atmos. Chem. Phys. 2004. V. 4. P. 2553–2560.
  55. Heintzenberg J., Wehner B., Birmili W. How to find bananas in the atmospheric aerosol: New approach for analyzing atmospheric nucleation and growth events // Tellus B. 2007. V. 59, N 2. P. 273–282.